藏南聂拉木高喜马拉雅结晶岩系上部韧性变形年代学及地质意义

被引:11
作者
刘小兵 [1 ,2 ,3 ]
刘小汉 [1 ]
LELOUP PH [2 ]
MAHEO G [2 ]
PAQUETTE JL [4 ]
张鑫刚 [3 ]
周学君 [1 ]
机构
[1] 中国科学院青藏高原研究所,大陆碰撞与高原隆升重点实验室
[2] Laboratoire des sciences de la terre de Lyon,Terre,Planètes,Environement,CNRS UMR,UniversitéLyon-ENS Lyon,Villeurbanne,,France
[3] 中国科学院研究生院
[4] Laboratoire Magmas et Volcans,CNRS UMR,UniversitéBlaise Pascal,Clermont-Ferrand,,France
关键词
高喜马拉雅结晶岩系上部(UHCS); 藏南拆离断层剪切带(STDsz); 聂拉木拆离断层(ND); 锆石-独居石U-Th/Pb年龄; 变形迁移;
D O I
暂无
中图分类号
P597.3 [];
学科分类号
070902 ;
摘要
藏南拆离断层系(STDS)为低角度正断层,其上盘为特提斯喜马拉雅沉积岩系,下盘为高喜马拉雅结晶岩系.厘定与STDS有关的变形时限,对深入理解喜马拉雅造山带的变形机制与构造演化具重要意义.聂拉木拆离断层(ND)(86°E)位于STDS中段(81°~89°E),ND下盘不同构造位置(即采样点位与ND的构造距离)的变形花岗质岩脉具有一定程度的同构造特征,锆石-独居石U-Th/Pb年龄可以不同程度地厘定变形时间:(1)样品T11N37(ND下盘约3500m构造位置)的侵位年龄为27.4±0.2Ma;(2)样品T11N32(ND下盘约1400m构造位置)的侵位年龄为22.0±0.3Ma;(3)样品T11N25(ND下盘约150m构造位置)的侵位年龄为17.1±0.2Ma,结合ND下盘冷却历史和T11N25变形温度,认为其变形最晚开始时间约为16Ma.年代学结果表明,变形作用的最晚开始时间由下盘往拆离面逐渐变年轻.因此提出ND下盘变形迁移的新模式,即ND下盘在约27.5Ma之前开始纯剪切为主的变形作用,随后变形以约0.3mm/a的速率向拆离面移动,并于约18Ma在藏南拆离断层剪切带(STDsz)底部转化为简单剪切变形为主.由于ND变形结束于14~13Ma,这意味着北向剪切作用的持续时限小于约5Ma,对下地壳流动模型提出新的挑战.
引用
收藏
页码:1562 / 1577
页数:16
相关论文
共 30 条
[1]   藏南定结地区早中新世淡色花岗岩的形成机制及其构造动力学意义 [J].
于俊杰 ;
曾令森 ;
刘静 ;
高利娥 ;
谢克家 .
岩石学报, 2011, 27 (07) :1961-1972
[2]   喜马拉雅造山带新生代构造演化:沿走向变化的构造几何形态、剥露历史和前陆沉积的约束 [J].
尹安 .
地学前缘, 2006, (05) :416-515
[3]   Electron microprobe monazite geochronology of granitic intrusions from the Montes de Toledo batholith (central Spain) [J].
Orejana, David ;
Merino, Enrique ;
Villaseca, Carlos ;
Perez-Soba, Cecilia ;
Cuesta, Andres .
GEOLOGICAL JOURNAL, 2012, 47 (01) :41-58
[4]  
Telescoping of isotherms beneath the South Tibetan Detachment System, Mount Everest Massif[J] . R.D. Law,M.J. Jessup,M.P. Searle,M.K. Francsis,D.J. Waters,J.M. Cottle.Journal of Structural Geology . 2011 (11)
[5]  
Episodic exhumation of the Greater Himalayan Sequence since the Miocene constrained by fission track thermochronology in Nyalam, central Himalaya[J] . An Wang,John I. Garver,Guocan Wang,Jacqueline A. Smith,Kexin Zhang.Tectonophysics . 2010 (3)
[6]  
Structure and deformation around the Gyirong basin, north Himalaya, and onset of the south Tibetan detachment system[J] . XiongYing Yang,JinJiang Zhang,GuoWei Qi,DeChao Wang,Lei Guo,PengYuan Li,Jiang Liu.Science in China Series D: Earth Sciences . 2009 (8)
[7]  
High resolution (5 μm) U–Th–Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS[J] . J.L. Paquette,M. Tiepolo.Chemical Geology . 2007 (3)
[8]  
Structural insights into the early stages of exhumation along an orogen-scale detachment: The South Tibetan Detachment System, Dzakaa Chu section, Eastern Himalaya[J] . John M. Cottle,Micah J. Jessup,Dennis L. Newell,Michael P. Searle,Richard D. Law,Matthew S.A. Horstwood.Journal of Structural Geology . 2007 (11)
[9]   Geology of the summit limestone of Mount Qomolangma (Everest) and cooling history of the Yellow Band under the Qomolangma detachment [J].
Sakai, H ;
Sawada, M ;
Takigami, Y ;
Orihashi, Y ;
Danhara, T ;
Iwano, H ;
Kuwahara, Y ;
Dong, Q ;
Cai, HW ;
Li, JG .
ISLAND ARC, 2005, 14 (04) :297-310
[10]  
Timescales of melt generation and the thermal evolution of the Himalayan metamorphic core, Everest region, eastern Nepal[J] . Karen Viskupic,Kip V Hodges,Samuel A Bowring.Contributions to Mineralogy and Petrology . 2005 (1)