Evaluation of Two Momentum Control Variable Schemes and Their Impact on the Variational Assimilation of Radar Wind Data:Case Study of a Squall Line

被引:8
作者
Xin LI [1 ,2 ]
Mingjian ZENG [1 ]
Yuan WANG [2 ]
Wenlan WANG [1 ]
Haiying WU [3 ]
Haixia MEI [1 ]
机构
[1] Jiangsu Research Institute of Meteorological Sciences
[2] Key Laboratory of Mesoscale Severe Weather/MOE,and School of Atmospheric Sciences,Nanjing University
[3] Jiangsu Provincial Observatory
关键词
three-dimensional variational assimilation; momentum control variable; Doppler radar data; squall line;
D O I
暂无
中图分类号
P412.25 [雷达探测];
学科分类号
0706 ; 070601 ;
摘要
Different choices of control variables in variational assimilation can bring about different influences on the analyzed atmospheric state.Based on the WRF model's three-dimensional variational assimilation system,this study compares the behavior of two momentum control variable options—streamfunction velocity potential(ψ–χ) and horizontal wind components(U–V)—in radar wind data assimilation for a squall line case that occurred in Jiangsu Province on 24 August 2014.The wind increment from the single observation test shows that the ψ–χ control variable scheme produces negative increments in the neighborhood around the observation point because streamfunction and velocity potential preserve integrals of velocity.On the contrary,the U–V control variable scheme objectively reflects the information of the observation itself.Furthermore,radial velocity data from 17 Doppler radars in eastern China are assimilated.As compared to the impact of conventional observation,the assimilation of radar radial velocity based on the U–V control variable scheme significantly improves the mesoscale dynamic field in the initial condition.The enhanced low-level jet stream,water vapor convergence and low-level wind shear result in better squall line forecasting.However,the ψ–χ control variable scheme generates a discontinuous wind field and unrealistic convergence/divergence in the analyzed field,which lead to a degraded precipitation forecast.
引用
收藏
页码:1143 / 1157
页数:15
相关论文
共 19 条
[1]   GPS/PWV资料同化在强降水过程中的定量作用评估 [J].
曾明剑 ;
张备 ;
周嘉陵 ;
王文兰 ;
梅海霞 .
气象科学, 2014, 34 (01) :77-86
[2]   雷达资料在登陆台风“桑美”数值模拟中的应用 [J].
施丽娟 ;
许小峰 ;
李柏 ;
杨洪平 ;
许凤雯 .
应用气象学报, 2009, 20 (03) :257-266
[3]  
New generation of multi-scale NWP system (GRAPES):general scientific design[J]. CHEN DeHui1, XUE JiShan1, YANG XueSheng1, ZHANG HongLiang1, SHEN XueShun1, HU JiangLin1, WANG Yu2, JI LiRen3 & CHEN JiaBin3 1 State Key Laboratory of Server Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China;2 National Meteorological Center, Beijing 100081, China;3 Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100089, China.Chinese Science Bulletin. 2008(22)
[4]   多普勒天气雷达资料对中尺度模式短时预报的影响 [J].
盛春岩 ;
浦一芬 ;
高守亭 .
大气科学, 2006, (01) :93-107
[5]   Comparison of the Impacts of Momentum Control Variables on High-Resolution Variational Data Assimilation and Precipitation Forecasting [J].
Sun, Juanzhen ;
Wang, Hongli ;
Tong, Wenxue ;
Zhang, Ying ;
Lin, Chung-Yi ;
Xu, Dongmei .
MONTHLY WEATHER REVIEW, 2016, 144 (01) :149-169
[6]   Implementation of a dynamic equation constraint based on the steady state momentum equations within the WRF hybrid ensemble-3DVar data assimilation system and test with radar T-TREC wind assimilation for tropical Cyclone Chanthu (2010) [J].
Li, Xin ;
Ming, Jie ;
Xue, Ming ;
Wang, Yuan ;
Zhao, Kun .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (09) :4017-4039
[7]   Assimilation of T-TREC-retrieved wind data with WRF 3DVAR for the short-term forecasting of typhoon Meranti (2010) near landfall [J].
Li, Xin ;
Ming, Jie ;
Wang, Yuan ;
Zhao, Kun ;
Xue, Ming .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (18) :10361-10375
[8]  
WRF-ARW Variational Storm-Scale Data Assimilation: Current Capabilities and Future Developments[J] . Juanzhen Sun,Hongli Wang,Jidong Gao.<journal-title>Advances in Meteorology . 2013
[9]  
Radar Data Assimilation with WRF 4D-Var. Part I: System Development and Preliminary Testing[J] . Wang,Hongli,Sun,Juanzhen,Zhang,Xin,Huang,Xiang-Yu,Auligné,Thomas.Monthly Weather Review . 2013 (7)
[10]  
Radar Data Assimilation with WRF 4D-Var. Part II: Comparison with 3D-Var for a Squall Line over the U.S. Great Plains[J] . Sun,Juanzhen,Wang,Hongli.Monthly Weather Review . 2013 (7)