基于纹理特征提取的图像分类方法研究及系统实现

被引:28
作者
谢菲
陈雷霆
邱航
机构
[1] 电子科技大学计算机科学与工程学院
关键词
纹理特征提取; 图像分类; 灰度共生矩阵; 支持向量机;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
深入研究灰度共生矩阵算法,结合和差统计法对其进行改进。编码实现改进的图像纹理提取算法,并采用基于径向基内积函数内核的支持向量机方法对图像分类效果进行实验。通过训练和测试证明,该系统能减少特征提取的计算时间和存储空间,并可达到良好的图像分类效果
引用
收藏
页码:2767 / 2770
页数:4
相关论文
共 10 条
[1]  
Grey level co-occurrence integrated algorithm(GLCIA):a superior computational method to rapidly determine co-occurrence probability texture features. David A Clausi,Zhao Yongping. Computers and Geosciences . 2003
[2]  
Image retrieval based on color and texture. WU Cheng-yu,TAI Xiao-ying. Proc of the4th International Conference on Fuzzy Sys-tems and Knowledge Discovery . 2007
[3]  
Deriving texture feature set for content-based retrieval of satellite image database. SGENG L,CLASTELLI V. Proc of International Conference on Image Processing . 1997
[4]  
Rapid extraction of image texture by co-occurrence using a hybrid data structure. Clausi DA,Zhao YP. Computers and Geosciences . 2002
[5]  
Texture features for image classification. Haralick R M,Shanmugam K,Dinstein I. IEEE Transactions on Systems Man and Cybernetics . 1973
[6]  
An Investigation of the Textural Characteristics Associated with Gray level Cooccurrence Matrix Statistical Parameters. Baraldi A,Parmiggiani F. IEEE Transactions on Geoscience and Remote Sensing . 1995
[7]  
Texture Segmentation on SAR Ice Imagery. Clausi D A. . 1996
[8]  
A fast method to determine co-occurrence texture features. Clausi, D.A,Jernigan, M.E. IEEE Trans. Geosci. Remote Sensing . 1998
[9]  
Texture-based classification of hysteroscopy images of the endometrium. NEOFYTOUMS,TANOS V,PATTICHIS MS,et al. Proc of EMBS Annual International Conference . 2006
[10]  
Sumand Difference Histograms for Texture Classification. UNSER M. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1986