利用内聚力模型(CZM)模拟弹粘塑性多晶体的裂纹扩展

被引:14
作者
吴艳青
张克实
机构
[1] 西北工业大学工程力学系
关键词
裂纹扩展; 弹粘塑性; 内聚力模型; 多晶体; 晶界;
D O I
暂无
中图分类号
O346.1 [断裂理论];
学科分类号
080102 ;
摘要
采用内聚力模型(CZM),模拟多晶体中起裂于晶界的二维平面应变裂纹扩展.结果表明,弹粘塑性体中,初始裂纹尖端不会最先开裂.晶体本构的率敏感指数表征了塑性变形和内聚力区耗散两种机制的相互竞争.率敏感指数越大,塑性耗散能越大,内聚力区粘着能越小,使材料的塑性变形越容易,内聚力区诱发的破坏越不易;率敏感指数越小,材料响应越接近弹塑性性质,塑性耗散能减小,粘着能增大,外力功易转化为内聚力区的粘着能,使内聚力单元更易分离.增大内聚力区结合强度或临界张开位移使晶内和晶界的三轴应力度减小,即提高内聚力区韧性也使基体材料抗孔洞损伤能力提高.
引用
收藏
页码:454 / 462
页数:9
相关论文
共 16 条
[1]  
Engineering Fracture Mechanics[C]. The Eighth International Conference on Fundamentals of Fracture(ICFF VIII),2008
[2]  
Theoretical development and experimental validation of a theramally dissipa-tive cohesive zone model for dynamic fracture of amorphous polymers. Bjerke T W,Lambros J. Jouranl of the Mechanicsand Physics of Solids . 2003
[3]  
Crack growth predictions by cohesive zone model for ductile fracture. Tvergaard V. Journal of theMechanics and Physics of Solids . 2001
[4]  
A grain level model for the study of failure initiation and evolution inpolycrystalline brittle materials—PartⅡNumerial examples. Espinosa H D,Zavattieri P D. Mechanics of Materials . 2003
[5]  
Formulation of a three_dimensional cohesive zone model for ap-plication to a finite element algorithm. Foulk J W,Allen D H,Helms K L E. Compute Methods in Applied Mechanics Engineering . 2000
[6]  
Analysis of crack growth and crack_tip plasticity in ductile materials using cohesivezone models. Li H,Chandra N. International Journal of Plasticity . 2003
[7]  
Engineering Fracture Mechanics[C]. The Eighth International Conference on Fundamentals of Fracture(ICFF VIII),2008
[8]  
Effect of fiber debonding in a whisker_reinforce metal. Tvergaard V. Materials Science Engineer-ing A . 1990
[9]  
Mechanics of Solids Materials. Lemaitre J,Chaboche J L. . 1994
[10]  
Engineering Fracture Mechanics[C]. The Eighth International Conference on Fundamentals of Fracture(ICFF VIII),2008