基于自适应多尺度形态梯度与非负矩阵分解的轴承故障诊断

被引:5
作者
刘东升 [1 ]
李元 [1 ]
杨博文 [2 ]
张帅 [2 ]
李兵 [1 ]
机构
[1] 军械工程学院四系
[2] 武汉军械士官学校弹药导弹系
关键词
自适应多尺度形态梯度; 非负矩阵分解; 轴承; 特征提取; 故障诊断;
D O I
10.13465/j.cnki.jvs.2013.19.011
中图分类号
TH165.3 [];
学科分类号
摘要
轴承故障诊断的关键步骤是信号处理与特征参数提取。提出采用自适应多尺度形态梯度算法对轴承振动信号进行处理,综合利用小尺度下能保留信号细节和大尺度下抑制噪声的优点,可有效地提取振动信号中反映轴承状态的冲击分量;在此基础上提出采用非负矩阵分解技术对信号进行压缩,计算用于轴承故障诊断的特征参量。采用轴承在七种状态下的振动信号对所提出的信号处理和特征参数提取方法进行验证,结果表明:与传统的信号处理与特征参量提取方法相比,本文提出的方法具有更高的轴承故障分类精度,为准确判断轴承工作状态提供了一种行之有效的新方法。
引用
收藏
页码:106 / 110
页数:5
相关论文
共 8 条
[1]   基于自适应多尺度形态梯度变换的滚动轴承故障特征提取 [J].
李兵 ;
张培林 ;
刘东升 ;
米双山 ;
任国全 .
振动与冲击, 2011, 30 (10) :104-108
[2]  
Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension[J] . Junyan Yang,Youyun Zhang,Yongsheng Zhu. Mechanical Systems and Signal Processing . 2006 (5)
[3]  
Vibration monitoring for defect diagnosis of rolling element bearings as a predictive maintenance tool: Comprehensive case studies[J] . NDT and E International . 2005 (4)
[4]  
A fault diagnosis approach for roller bearings based on EMD method and AR model[J] . Cheng Junsheng,Yu Dejie,Yang Yu. Mechanical Systems and Signal Processing . 2004 (2)
[5]  
Bearing fault diagnosis based on wavelet transform and fuzzy inference[J] . Xinsheng Lou,Kenneth A Loparo. Mechanical Systems and Signal Processing . 2003 (5)
[6]   Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings [J].
Rubini, R ;
Meneghetti, U .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2001, 15 (02) :287-302
[7]  
A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings[J] . N Tandon,A Choudhury. Tribology International . 2000 (8)
[8]   A comparison of autoregressive modeling techniques for fault diagnosis of rolling element bearings [J].
Baillie, DC ;
Mathew, J .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1996, 10 (01) :1-17