紧急疏散情况下的公交车运行计划优化研究

被引:16
作者
宋瑞 [1 ]
何世伟 [1 ]
章力 [2 ]
机构
[1] 北京交通大学交通运输学院
[2] 美国密西西比州立大学土木与环境工程学院
关键词
紧急疏散; 选址—路径优化; 混合遗传算法; 公共交通; 不确定性优化;
D O I
10.16097/j.cnki.1009-6744.2009.06.025
中图分类号
U491.17 [];
学科分类号
082302 ; 082303 ;
摘要
提出飓风等自然灾害条件下运用公交车进行居民紧急疏散的优化模型.最优公交车疏散运行计划问题可转化为不确定性需求的选址—路径优化模型,目标函数是使总疏散时间最小.选址—路径优化模型用于确定最有效的公交车集结点服务区域和将人员从受灾区域转移到指定避难所或安全地区的最优线路,并设计遗传算法、神经网络算法和爬山算法结合的混合启发式算法.通过美国密西西比州格尔夫波特市的实际数据对所提出的模型进行验证.实验结果表明,混合遗传算法在求解效果和效率上都优于传统的遗传算法.
引用
收藏
页码:154 / 160
页数:7
相关论文
共 7 条
[1]   Competitive Memetic Algorithms for Arc Routing Problems [J].
Philippe Lacomme ;
Christian Prins ;
Wahiba Ramdane-Cherif .
Annals of Operations Research, 2004, 131 :159-185
[2]  
National review of hurricane evacuation plans and policies: a comparison and contrast of state practices[J] . Elba Urbina,Brian Wolshon.Transportation Research Part A . 2003 (3)
[3]  
A two-phase heuristic method for the multi-depot location routing problem taking inventory control decisions into consideration[J] . S. C. Liu,S. B. Lee.The International Journal of Advanced Manufacturing Technology . 2003 (11)
[4]   Heuristic solutions to multi-depot location-routing problems [J].
Wu, TH ;
Low, C ;
Bai, JW .
COMPUTERS & OPERATIONS RESEARCH, 2002, 29 (10) :1393-1415
[5]  
A multiple-depot, multiple-vehicle, location-routing problem with stochastically processed demands[J] . Yupo Chan,William B. Carter,Michael D. Burnes.Computers and Operations Research . 2001 (8)
[6]  
Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands[J] . Nicola Secomandi.Computers and Operations Research . 2000 (11)
[7]  
Introduction to algorithms. Cormen TH, Leiserson CE, Rivest RL. MIT Press . 1990