考虑风电并网的分时段短期电价预测

被引:3
作者
唐兰兰
温步瀛
江岳文
机构
[1] 福州大学电气工程与自动化学院
关键词
电价预测; 出清电价; 并网风电量; 神经网络; 概率分布;
D O I
暂无
中图分类号
TM744 [电力系统的计算]; F426.61 [];
学科分类号
摘要
考虑了并网风电量对电价影响,并将相关系数作为选取电价影响因素的标准,考虑了历史电价、负荷、并网风电量与负荷的比值等影响电价的因素。分别将负荷与历史清算电价,等效负荷与历史清算电价,负荷、并网风电量与负荷的比值及历史清算电价作为神经网络的输入因子对市场清算电价进行分时段预测。算例采用丹麦电力市场的历史数据,分别对其2010年并网风电量所占比例较大和较小的日期进行预测,验证了选择负荷、并网风电量与负荷的比值及历史清算电价作为预测神经网络的输入变量是恰当的,其预测精度能够满足电力市场实际运行的需要。
引用
收藏
页码:84 / 89+94 +94
页数:7
相关论文
共 17 条
[1]   小波神经网络嵌入专家系统的短期电力负荷预测 [J].
刘东 ;
李莉 .
陕西电力, 2009, 37 (10) :44-48
[2]   基于需求预测的陕西电力通信网发展规划研究 [J].
曾维欢 ;
魏明海 ;
杨储华 ;
张雁 ;
谷明英 .
陕西电力, 2010, 38 (06) :19-22
[3]  
Adaptive short-term electricity price forecasting using artificial neural networks inthe restructured power markets. Yamin H Y,Shahidehpour S M,Li Z. Electrical Power and Energy Systems . 2004
[4]  
Selecting input factors for clusters of Gaussian radial basis function networks to improve market clearing price prediction. GUO J J,LUH P B. IEEE Transactions on Power Systems . 2003
[5]  
Locational Marginal Price Forecasting in Deregulated Electricity Markets Using Artificial Intelligence. Hong Y Y,Hsiao C Y. IEE Proceedings:Generation,Transmission and Distribution . 2002
[6]  
Electric price short-term forecasting using artificial neural networks. B R Szkuta,L A Sanabria,T S Dillon. IEEE Transactions on Power Systems . 1999
[7]  
ARIMA models to predict next-day electricity prices. Contreras J,Espinola R,Nogales FJ,et al. IEEE Transactions on Power Systems . 2003
[8]  
Forecasting Next-day Electricity Prices by Time Series Models. Nogales F J,Contreras J,Conejo A J,et al. IEEE Transactions on Power Systems . 2002
[9]  
Forecasting Power market clearing priceand quantity using a neural network method. Gao F,Guan X,Cao X. et al. Proc. of 2000 IEEE/Power Eng. Soc. Summer Meeting[C], Seattle, WA, USA . 2000
[10]  
Confidence interval prediction for neural networks. George Chryssolouris,Moshin Lee. IEEE Transactions on Neural Networks . 1996