前向神经网络隐含层节点数的一种优化算法

被引:118
作者
夏克文
李昌彪
沈钧毅
机构
[1] 西安交通大学电子与信息工程学院西安
关键词
前向神经网络; 隐含层节点数; 黄金分割; 优化算法;
D O I
暂无
中图分类号
TP183 [人工神经网络与计算];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
由于前向神经网络隐含层节点数的确定尚无理论依据,为此提出一种基于黄金分割原理的优化算法,首先确定网络隐含层节点数频繁出现的区间范围;将网络总误差作为试验结果,然后利用黄金分割法搜索其区间中的理想数值;兼顾高精度的需要,将隐含层节点数频繁出现的区间作拓展,可以求得逼近能力更强的节点数。算法分析和仿真例子表明,此优化算法是切实可行的,不仅能找到理想的隐含层节点数,而且能起到节省成本、提高搜索效率等功效。
引用
收藏
页码:143 / 145
页数:3
相关论文
共 1 条
[1]   基于Levenberg-Marquardt算法的神经网络监督控制 [J].
赵弘 ;
周瑞祥 ;
林廷圻 .
西安交通大学学报, 2002, (05) :523-527