共 6 条
基于v-支持向量回归的T-S模糊模型辨识
被引:8
作者:
李益国
沈炯
机构:
[1] 东南大学动力系
来源:
关键词:
v-支持向量回归;
T-S模糊模型;
泛化性能;
ε不灵敏损失函数;
负荷系统;
D O I:
10.13334/j.0258-8013.pcsee.2006.18.027
中图分类号:
TB112 [数学分析与函数的应用];
学科分类号:
摘要:
结论参数对T-S模糊模型的泛化能力有重要影响。该文引入v-支持向量回归机(v-SVRM),把T-S模型结论参数的辨识问题转化为一个约束优化问题,并推导了新的迭代求解算法。该方法通过一个参数v控制支持向量的数目和落在ε不灵敏带外样本点的数目,并自动计算合适的ε。针对典型负荷被控对象的仿真结果表明:该方法比通常采用最小二乘法进行结论参数辨识的方法具有更好的泛化能力;此外,由于采用了ε不灵敏损失函数,该方法具有更好的噪声适应能力。
引用
收藏
页码:148 / 153
页数:6
相关论文