基于浮动阈值分类器组合的多标签分类算法

被引:9
作者
张丹普 [1 ,2 ]
付忠良 [1 ]
王莉莉 [1 ,2 ]
李昕 [1 ,2 ]
机构
[1] 中国科学院成都计算机应用研究所
[2] 中国科学院大学
关键词
连续AdaBoost; 浮动阈值; 极大似然原理; 多标签分类; 集成学习; 二分类方法;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
针对目标可以同时属于多个类别的多标签分类问题,提出了一种基于浮动阈值分类器组合的多标签分类算法。首先,分析探讨了基于浮动阈值分类器的Ada Boost算法(Ada Boost.FT)的原理及错误率估计,证明了该算法能克服固定分段阈值分类器对分类边界附近点分类不稳定的缺点从而提高分类准确率;然后,采用二分类(BR)方法将该单标签学习算法应用于多标签分类问题,得到基于浮动阈值分类器组合的多标签分类方法,即多标签Ada Boost.FT。实验结果表明,所提算法的平均分类精度在Emotions数据集上比Ada Boost.MH、ML-k NN、Rank SVM这3种算法分别提高约4%、8%、11%;在Scene、Yeast数据集上仅比Rank SVM低约3%、1%。由实验分析可知,在不同类别标记之间基本没有关联关系或标签数目较少的数据集上,该算法均能得到较好的分类效果。
引用
收藏
页码:147 / 151
页数:5
相关论文
共 10 条
[1]   Multilabel Relationship Learning [J].
Zhang, Yu ;
Yeung, Dit-Yan .
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2013, 7 (02)
[2]  
BoosTexter: A Boosting-based System for Text Categorization[J] . Robert E. Schapire,Yoram Singer. &nbspMachine Learning . 2000 (2)
[3]   Improved boosting algorithms using confidence-rated predictions [J].
Schapire, RE ;
Singer, Y .
MACHINE LEARNING, 1999, 37 (03) :297-336
[4]  
A k-nearest neighbor based algorithm for multi-label classification. Zhang Minling,Zhou Zhihua. 1st IEEE International Conference on Granular Computing . 2005
[5]  
A Kernel Method for Multi-Labelled Classification. Elisseeff A,Weston J. Proceedings of Neural Information Processing Systems . 2001
[6]  
Multi-label learning by exploiting label dependency. Zhang M L,Zhang K. Pro-ceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining . 2010
[7]  
Ada Boost algorithm with floating threshold. FU Z,ZHANG D,ZHAO X,et al. ACAI 2012:Proceedings of the 2012 International Conference on Automatic Control and Artificial Intelligence . 2012
[8]   Learning multi-label scene classification [J].
Boutell, MR ;
Luo, JB ;
Shen, XP ;
Brown, CM .
PATTERN RECOGNITION, 2004, 37 (09) :1757-1771
[9]  
Multi-Label Classification: An Overview[J] . Grigorios Tsoumakas,Ioannis Katakis. &nbspInternational Journal of Data Warehousing and Mining (IJDWM) . 2007 (3)
[10]   Classifier chains for multi-label classification [J].
Read, Jesse ;
Pfahringer, Bernhard ;
Holmes, Geoff ;
Frank, Eibe .
MACHINE LEARNING, 2011, 85 (03) :333-359