基于量子粒子群优化算法的压缩感知数据重构方法

被引:1
作者
刘洲洲 [1 ]
李艳平 [2 ]
机构
[1] 西安航空学院
[2] 菏泽学院计算机与信息工程系
关键词
量子理论; 粒子群优化算法; 压缩感知; 数据重构;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
针对传感器监测对象特点,将压缩感知理论应用于数据压缩过程以降低通信能耗,并根据现有压缩感知数据重构算法存在的重构精度受稀疏度影响较大的缺点,在分析了压缩感知数据重构原理后,提出了将原始信号按固定长度进行分帧处理以减少算法解空间的数量,并将量子理论中的编码方式应用于粒子群优化算法,提出了基于量子粒子群优化算法的压缩感知数据重构方法 QP-CSDR。算法根据传感器监测对象特点,从统计学角度出发对粒子群优化算法中的粒子初始位置及粒子群更新方式加以改进,以提高数据重构精度。仿真实验结果表明,在稀疏度小于50的条件下,QP-CSDR算法相对已有算法在重构精度方面性能提升20%40%,该算法已应用于微地震及音频监测系统中,经实际检验算法在保证数据精度的前提下延长系统寿命2倍4倍左右。
引用
收藏
页码:836 / 841
页数:6
相关论文
共 6 条