温度和压力对深水钻井油基钻井液液柱压力的影响

被引:38
作者
管志川
机构
[1] 石油大学石油工程学院山东东营
关键词
深水钻井; 油基钻井液; 钻井液密度; 温度; 压力; 计算模型;
D O I
暂无
中图分类号
TE254 [钻井液的使用与处理];
学科分类号
摘要
根据不同温度和压力下油基钻井液密度的测量结果 ,建立了温度、压力影响下的油基钻井液密度计算模型。在模型中引入了热膨胀系数和弹性压缩系数 ,利用该模型计算了不同温度和压力下的钻井液密度值。模型计算的密度与实测值之间的最大相对误差小于 0 .3% ,平均相对误差为 0 .11%。利用该模型对深水钻井时不同条件下井眼内钻井液密度和液柱压力变化进行了计算和分析。结果表明 ,在深水钻井中 ,井眼内的钻井液密度通常大于井口钻井液密度 ;最大钻井液密度出现在海底泥线处 ;井眼内钻井液液柱压力的当量密度大于井口的钻井液密度。采用无隔水管钻井时的环空钻井液密度小于隔水管钻井时的钻井液密度。
引用
收藏
页码:48 / 52+57 +57-149
页数:7
相关论文
共 10 条
[1]  
Effect of temperature and pressure on the density of drilling fluids. MCMORDIE W C,JR BLAND R G,HAUSER J M. . 1982
[2]  
Feasibility study of a dual density mud system for deepwater drilling operations. LOPES C A,BOURGOYNE A T JR. . 1997
[3]  
Downhole measurements of synthetic-based drilling fluid in offshore well quantify dynamic pressure and temperature distributions. WHITE W W,ZAMORA M,SVOBODA C F. . 1996
[4]  
A model for predicting the density of oil-based muds at high pressures and temperatures. PETERS E J,CHENEVERT M E,ZHANG C. SPE Drilling Engineering . 1990
[5]  
Bottom-hole mud pressure variations due to compressibility and thermal effects. HOBEROCK L L,THOMAS D C,NICKENS H V. . 1982
[6]  
Determination of hydrostatic pressure and dynamic ECD by computer models and field measurements on the directional HPHT well 22130C- 13. BARANTHOL C,ALFENORE J,COTTERILL M D,et al. . 1995
[7]  
Empirical correlation determines downhole mud density. KUTASOV I M. Oil and Gas Journal . 1988
[8]  
Riserless drilling:concepts, applications, advantages, disadvantages and limitations. CHOE J,JUVKAM WOLD H C. . 1997
[9]  
Mathematical field model predicts downhole density changes in static drilling fluids. SORELLE R R,JARDIOLIN R A,BUCKLEY P,et al. . 1982
[10]  
Some challenges and innovations for deepwater developments. SALAMA M M. . 1997