融合特征的快速SURF配准算法

被引:17
作者
罗天健
刘秉瀚
机构
[1] 不详
[2] 福州大学数学与计算机科学学院
[3] 不详
关键词
SURF特征点; 颜色不变量边缘(CIM); CS-LBP纹理特征; RANSAC算法; 最小二乘法;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
目的针对基于SURF特征点的图像配准算法对颜色单一的彩色图像提取的特征点较少及配准时间复杂度高等问题,提出一种基于融合特征的快速SURF(speed up robust features)配准算法。方法该算法首先提取图像的颜色不变量边缘特征和CS-LBP(central symmetry-local binary patterns)纹理特征形成融合特征灰度图,并利用颜色直方图的方差自适应调节融合特征间的权重。其次,在融合特征灰度图上提取SURF(speed up robust features)特征点及描述子。再次,用最近邻匹配法形成粗匹配对,结合改进的快速RANSAC(random sample consensus)算法得到精匹配对。最后,使用最小二乘法求出映射关系用于配准图像。结果本文算法能够在融合特征上提取更稳定的SURF特征点,用该特征点进行配准能提高配准5%精度,且减少时间复杂度15%,实现了对普通场景下图像的快速配准。结论本文算法能提取稳定数量的特征点,提高了精确度与鲁棒性,并通过改进的RANSAC算法提高了执行效率,降低了迭代次数。
引用
收藏
页码:95 / 103
页数:9
相关论文
共 9 条
  • [1] 基于SURF的彩色图像配准
    石雅笋
    刘晓云
    陈奋
    [J]. 红外技术, 2010, 32 (07) : 415 - 419
  • [2] 基于CSIFT的彩色图像配准技术研究
    张锐娟
    张建奇
    杨翠
    张翔
    [J]. 光学学报, 2008, (11) : 2097 - 2103
  • [3] 基于SIFT的图像配准方法
    刘小军
    杨杰
    孙坚伟
    刘志
    [J]. 红外与激光工程, 2008, (01) : 156 - 160
  • [4] 基于特征的图像配准算法研究[D]. 吴铮.浙江大学. 2006
  • [5] Image registration methods: a survey[J] . Barbara Zitová,Jan Flusser.Image and Vision Computing . 2003 (11)
  • [6] A SURVEY OF IMAGE REGISTRATION TECHNIQUES
    BROWN, LG
    [J]. COMPUTING SURVEYS, 1992, 24 (04) : 325 - 376
  • [7] Random sample consensus[J] . Martin A. Fischler,Robert C. Bolles.Communications of the ACM . 1981 (6)
  • [8] Ein Beitrag zur Optik der Farbanstriche .2 Kubelka P,Munk F. Zurich. Technische Physik . 1931
  • [9] Color Invariance .2 Jan-Mark Geusebroek,Rein van den Boomgaard,Arnold W.M. Smeulders,Hugo Geerts. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2001