SF6局部放电(PD)时,某些特征分解组分气体的红外吸收频带存在重叠部分,利用光声检测法检测其成分时会有严重的交叉响应,影响检测准确度。为此,将主成分分析(PCA)与径向基函数(RBF)神经网络相结合,构建了一种能降低交叉响应的PCA-RBF神经网络,应用于光声检测法输出信号阵列的处理,以解决传统RBF神经网络在输入空间严重自相关时检测准确度的下降,实现对SO2、CO2、CF4混合气体中各组分气体体积分数的准确检测。结果表明:PCA-RBF神经网络有效地消除了样本之间的相关性,提高了神经网络对混合气体中各组分气体体积分数的检测准确度(平均相对误差<3%),为将光声检测法应用于SF6局部放电分解组分气体的检测提供了有效的数据处理手段。