面向微博系统的实时个性化推荐

被引:54
作者
高明 [1 ]
金澈清 [1 ]
钱卫宁 [1 ]
王晓玲 [1 ,2 ]
周傲英 [1 ,2 ]
机构
[1] 华东师范大学软件学院上海市高可信计算重点实验室
[2] 不详
关键词
实时推荐; 个性化推荐; LDA; 社交网络; 微博;
D O I
暂无
中图分类号
TP393.092 []; TP391.3 [检索机];
学科分类号
摘要
社交网络服务需要响应用户实时、连续、个性化的服务需求.然而,目前多数社交网络服务并未充分考虑用户的个性化服务需求.由于社交网络中海量的数据更新使得提供实时个性化服务成为一项相对艰巨的任务.文中基于LDA主题模型推断微博的主题分布和用户的兴趣取向,提出了微博系统上用户感兴趣微博的实时推荐方法,以响应用户实时、连续和个性化的服务请求,在真实数据集上的实验结果验证了文中提出的方法的有效性和高效性.
引用
收藏
页码:963 / 975
页数:13
相关论文
共 7 条
  • [1] The use of dynamic contexts to improve casual Internet searching
    Leroy, G
    Lally, AM
    Chen, H
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2003, 21 (03) : 229 - 253
  • [2] USING COLLABORATIVE FILTERING TO WEAVE AN INFORMATION TAPESTRY
    GOLDBERG, D
    NICHOLS, D
    OKI, BM
    TERRY, D
    [J]. COMMUNICATIONS OF THE ACM, 1992, 35 (12) : 61 - 70
  • [3] Collaborative personalized tweet recommendation. Chen K,Chen T,Zheng G,et al. Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval . 2012
  • [4] Automatic Identification of User Interest for Personalized Search. Feng Qiu,Junghoo Cho. Proceedings of the 15t h International Conference on World Wide Web . 2006
  • [5] Advances in Neural Information Processing Systems. Griffiths T L,Steyvers M,Blei D M,Tenenbaum J B. Vancouver,Canada . 2004
  • [6] Using ODP metadata to personalize search. Chirita P,Nejdl W,Paiu R,Kohlschutter C. Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval . 2005
  • [7] Probabilistic author-topic models for information discovery. Steyvers M,Smyth P,Rosen-Zvi M,Griffiths T. Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining . 2004