针对图像噪声类型未知、Meanshift平滑窗口难以确定致使图像细节被模糊的问题,提出多尺度Meanshift图像去噪算法。结合小波的"数字显微镜"的优点与Meanshift较强无参概率密度估计及快速模板匹配的特点,非常有效地去除了一组实际夜间远程拍摄图像中的未知噪声。算法执行过程中,首先,将图像进行二维离散小波变换,分解出低频子图和承载细节的高频轮廓子图;然后,区别于传统处理方式,高频子图保护不变,对低频子图进行Mean shift分析窗平滑,最后合成高频子图与低频滤波后图像形成去噪声后图像。该方法不仅弥补了单一Meanshift算法由于平滑窗口难以确定致使图像细节被过滤的缺陷,而且解决了一类实拍高噪声图像的去除,信噪比SNR为34.29。结果表明:本文提出的算法可以去除不同类型噪声图像,并可得到较高的信噪比。