一种基于双周期时间序列的短时交通流预测算法

被引:31
作者
邱敦国
杨红雨
机构
[1] 四川大学计算机学院
关键词
短时交通流预测; ARIMA模型; SARIMA模型; 贝叶斯模型; 日周期性; 周周期性;
D O I
10.15961/j.jsuese.2013.05.001
中图分类号
O242.1 [数学模拟]; U491.112 [];
学科分类号
摘要
根据城市道路短时交通流特征,在ARIMA(autoregressive integrated moving average model)模型和SARIMA(seasonal autoregressive integrated moving average model)模型的基础上,提出一种既满足城市道路日周期性和周周期性的短时交通流预测模型DSARIMA(double seasonal autoregressive integrated moving average model)模型,并根据城市道路工作日与非工作日交通流特点,提出该模型的预测算法。该算法采用两种方式利用ARIMA模型进行交通流预测,一种方式采用当前时刻前N1段时间进行预测,另一种方式采用当前时刻前N2天同一时段的交通流进行预测,并用改进的贝叶斯模型算法根据两种预测结果与实际值的误差来确定该种方式的权值,最后的预测结果为两种方式预测结果与其权值乘积之和。实验结果表明,该模型在交通流预测上,相比ARIMA模型和SARIMA模型预测具有更好的平稳性与更高的预测精度。
引用
收藏
页码:64 / 68
页数:5
相关论文
共 7 条
  • [1] 基于改进型贝叶斯组合模型的短时交通流量预测
    王建
    邓卫
    赵金宝
    [J]. 东南大学学报(自然科学版), 2012, 42 (01) : 162 - 167
  • [2] 基于贝叶斯组合模型的短期交通量预测研究
    郑为中
    史其信
    [J]. 中国公路学报, 2005, (01) : 89 - 93
  • [3] Forecasting urban traffic flow by SVR with continuous ACO[J] . Wei-Chiang Hong,Yucheng Dong,Feifeng Zheng,Chien-Yuan Lai.Applied Mathematical Modelling . 2010 (3)
  • [4] Short-Time Traffic Flow Prediction Based on Chaos Time Series Theory[J] . Jieni XUE,Zhongke SHI.Journal of Transportation Systems Engineering and Information Technology . 2008 (5)
  • [5] Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions[J] . Manoel Castro-Neto,Young-Seon Jeong,Myong-Kee Jeong,Lee D. Han.Expert Systems With Applications . 2008 (3)
  • [6] Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach[J] . Eleni I. Vlahogianni,Matthew G. Karlaftis,John C. Golias.Transportation Research Part C . 2005 (3)
  • [7] Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA Process: Theoretical Basis and Empirical Results[J] . Billy M. Williams,Lester A. Hoel.Journal of Transportation Engineering . 2003 (6)