求解非凸约束优化问题的p次幂拉格朗日方法

被引:2
作者
李娜
周芳宇
刘茜
机构
[1] 山东师范大学数学与统计学院
关键词
非凸约束优化; p次幂拉格朗日函数; 全局收敛; 算法;
D O I
暂无
中图分类号
O221.2 [非线性规划];
学科分类号
070105 ; 1201 ;
摘要
针对非凸约束优化问题,引入了一种等价的p次幂形式,并考虑了一类p次幂拉格朗日函数.给出了求解非凸约束优化问题的p次幂拉格朗日算法并且分析了它的全局收敛性.借助于数值实验,说明了算法的有效性.
引用
收藏
页码:10 / 16
页数:7
相关论文
共 13 条
[1]  
Augmented Lagrange multiplier functions and duality in nonconvex programming. Rockefeller RT. The SIAM Journal on Control and Optimization . 1974
[2]  
Math[P]. COLEMAN KENNETH ROSS.中国专利:US2013020766A1,2013-01-24
[3]  
On the convergence of augmented Lagrangian methods forconstrained global optimization. Luo H. Z,Sun X. L,Li D. SIAM Journal on Optimization . 2007
[4]  
Reformulation of the multiperiod MILP model for capacity expansion of chemical processes. N.V. Sahinidis,I.E. Grossmann. Operations Research . 1992
[5]   Local saddle points and convexification for nonconvex optimization problems [J].
Xu, ZK .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 94 (03) :739-746
[6]  
约束全局最优化增广Lagrangian方法及凸化方法研究. 罗和治. 上海大学 . 2006
[7]  
Optimization. Powell M J D. London;New York . 1969
[8]   A primal dual modified subgradient algorithm with sharp Lagrangian [J].
Burachik, Regina S. ;
Iusem, Alfredo N. ;
Melo, Jefferson G. .
JOURNAL OF GLOBAL OPTIMIZATION, 2010, 46 (03) :347-361
[9]  
Multiplier and gradient methods[J] . Magnus R. Hestenes. &nbspJournal of Optimization Theory and Applications . 1969 (5)
[10]  
A GLOBAL OPTIMIZATION APPROACH TO RATIONALLY CONSTRAINED RATIONAL PROGRAMMING[J] . Vasilios Manousiouthakis,Dennis Sourlas. &nbspChemical Engineering Communications . 1992 (1)