植物表型组学:发展、现状与挑战

被引:67
作者
周济 [1 ,2 ,3 ]
Francois Tardieu [4 ]
Tony Pridmore [5 ]
John Doonan [6 ]
Daniel Reynolds [2 ]
Neil Hall [2 ]
Simon Griffiths [7 ]
程涛 [1 ]
朱艳 [1 ]
王秀娥 [1 ]
姜东 [1 ]
丁艳锋 [1 ]
机构
[1] 南京农业大学植物表型组学研究中心
[2] Earlham Institute,Norwich Research Park
[3] University of East Anglia,Norwich Research Park
[4] INRA,University of Montpellier,LEPSE
[5] University of Nottingham
[6] Aberystwyth University,IBERS
[7] John Innes Centre,Norwich Research Park
关键词
表型组学; 多层次表型; 遥感; 成像技术; 机器人技术; 物联网; 人工智能; 高通量性状分析;
D O I
暂无
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
随着遥感、机器人技术、计算机视觉和人工智能的发展,植物表型组学研究已经步入了快速成长阶段。本文首先介绍了植物表型组学的发展简史,包括其理论核心、研究方法、在生物研究中的应用以及国际上最新的研究动向。然后,针对各类表型技术载体平台如手持、人载、车载、田间实时监控、大型室内外自动化平台和航空机载等,分析这些技术手段在室内、外植物研究中的应用情况和实际问题。为了对表型研究中产生的巨量图像和传感器数据进行量化分析,把大数据转化为有实际意义的性状信息和生物学知识,本文着重讨论了后期表型数据解析和相应的研发过程。最后,提出表型组学的应用前景与未来展望,以期为中国的表型研究提供指导和建议。
引用
收藏
页码:580 / 588
页数:9
相关论文
共 33 条
[1]   High-throughput Phenotyping and Genomic Selection:The Frontiers of Crop Breeding Converge [J].
Lloren CabreraBosquet ;
Jos Crossa ;
Jarislav von Zitzewitz ;
Mara Dolors Serret ;
Jos Luis Araus .
Journal of Integrative Plant Biology, 2012, 54 (05) :312-320
[2]  
The Physiological Basis of Drought Tolerance in Crop Plants: A Scenario-Dependent Probabilistic Approach[J] . Fran?ois Tardieu,Thierry Simonneau,Bertrand Muller.Annual Review of Plant Biology . 2018
[3]  
Machine learning and systems genomics approaches for multi-omics data[J] . Eugene Lin,Hsien-Yuan Lane.Biomarker Research . 2017 (1)
[4]  
Comparative Performance of Ground vs. Aerially Assessed RGB and Multispectral Indices for Early-Growth Evaluation of Maize Performance under Phosphorus Fertilization[J] . Adrian Gracia-Romero,Shawn C. Kefauver,Omar Vergara-Díaz,Mainassara A. Zaman-Allah,Boddupalli M. Prasanna,Jill E. Cairns,José L. Araus.Frontiers in Plant Science . 2017
[5]   Deep machine learning provides state-of-the-art performance in image-based plant phenotyping [J].
Pound, Michael P. ;
Atkinson, Jonathan A. ;
Townsend, Alexandra J. ;
Wilson, Michael H. ;
Griffiths, Marcus ;
Jackson, Aaron S. ;
Bulat, Adrian ;
Tzimiropoulos, Georgios ;
Wells, Darren M. ;
Murchie, Erik H. ;
Pridmore, Tony P. ;
French, Andrew P. .
GIGASCIENCE, 2017, 6 (10)
[6]  
The Thorvald II Agricultural Robotic System[J] . Lars Grimstad,P?l Johan From.Robotics . 2017 (4)
[7]   Combining Multi-Agent Systems and Wireless Sensor Networks for Monitoring Crop Irrigation [J].
Villarrubia, Gabriel ;
De Paz, Juan F. ;
De la Iglesia, Daniel H. ;
Bajo, Javier .
SENSORS, 2017, 17 (08)
[8]  
Plant Phenomics, From Sensors to Knowledge[J] . Fran?ois Tardieu,Lloren? Cabrera-Bosquet,Tony Pridmore,Malcolm Bennett.Current Biology . 2017 (15)
[9]   MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network [J].
Kuhlgert, Sebastian ;
Austic, Greg ;
Zegarac, Robert ;
Osei-Bonsu, Isaac ;
Hoh, Donghee ;
Chilvers, Martin I. ;
Roth, Mitchell G. ;
Bi, Kevin ;
TerAvest, Dan ;
Weebadde, Prabode ;
Kramer, David M. .
ROYAL SOCIETY OPEN SCIENCE, 2016, 3 (10)
[10]   Machine Learning for Plant Phenotyping Needs Image Processing [J].
Tsaftaris, Sotirios A. ;
Minervini, Massimo ;
Scharr, Hanno .
TRENDS IN PLANT SCIENCE, 2016, 21 (12) :989-991