AlphaGo的突破与兵棋推演的挑战

被引:36
作者
胡晓峰 [1 ]
贺筱媛 [1 ]
陶九阳 [1 ,2 ]
机构
[1] 国防大学信息作战与指挥训练教研部
[2] 陆军工程大学指挥信息系统学院
关键词
AlphaGo; 深度学习; 兵棋推演; 态势认知;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
概述了AlphaGo的原理、方法创新、技术突破和在认识论上的意义。分析了兵棋推演面临的瓶颈,指出了作战智能态势认知是亟需突破的关键环节。提出了解决作战态势智能认知的实现途径。展望了"人机智能"为兵棋推演带来的新机遇。
引用
收藏
页码:49 / 60
页数:12
相关论文
共 11 条
  • [1] AlphaGo技术原理分析及人工智能军事应用展望
    陶九阳
    吴琳
    胡晓峰
    [J]. 指挥与控制学报, 2016, 2 (02) : 114 - 120
  • [2] Where Does AlphaGo Go: From Church-Turing Thesis to AlphaGo Thesis and Beyond
    Fei-Yue Wang
    Jun Jason Zhang
    Xinhu Zheng
    Xiao Wang
    Yong Yuan
    Xiaoxiao Dai
    Jie Zhang
    Liuqing Yang
    [J]. IEEE/CAAJournalofAutomaticaSinica, 2016, 3 (02) : 113 - 120
  • [3] 战争模拟原理与系统[M]. 国防大学出版社 , 胡晓峰等, 2009
  • [4] Human-level concept learning through probabilistic program induction
    Lake, Brenden M.
    Salakhutdinov, Ruslan
    Tenenbaum, Joshua B.
    [J]. SCIENCE, 2015, 350 (6266) : 1332 - 1338
  • [5] WHY WARGAMING WORKS
    Perla, Peter P.
    McGrady, E. D.
    [J]. NAVAL WAR COLLEGE REVIEW, 2011, 64 (03) : 111 - 130
  • [6] A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems[J] . Oscar Cordón.International Journal of Approximate Reasoning . 2011 (6)
  • [7] A fast learning algorithm for deep belief nets
    Hinton, Geoffrey E.
    Osindero, Simon
    Teh, Yee-Whye
    [J]. NEURAL COMPUTATION, 2006, 18 (07) : 1527 - 1554
  • [8] Deep Blue[J] . Murray Campbell,A.Joseph Hoane,Feng-hsiung Hsu.Artificial Intelligence . 2001 (1)
  • [9] Mixing floating- and fixed-point formats for neural network learning on neuroprocessors
    Anguita, D
    Gomes, BA
    [J]. MICROPROCESSING AND MICROPROGRAMMING, 1996, 41 (10): : 757 - 769
  • [10] Searching for solutions in games and artifcial intelligence. ALLIS L V. University Limburg . 1994