支持向量机增量学习算法研究

被引:27
作者
李凯
黄厚宽
机构
[1] 北京交通大学计算机与信息技术学院
基金
国家科技攻关计划;
关键词
支持向量机; 增量学习; 期望风险; 固定划分; 过间隔;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
给出了使用多支持向量机进行增量学习的算法.传统的支持向量机不具有增量学习性能,而常用的增量学习方法各具有不同的优缺点,基于固定划分和过间隔技术,提出了使用多支持向量机进行增量学习的算法;使用此算法,针对标准数据集BUPA及用NDC生成的数据集OUTTRAIN进行了实验,结果表明,使用单一的支持向量机进行增量学习,不论采用过间隔还是固定划分技术,其增量学习的正确率不及使用多支持向量机增量学习算法的正确率.
引用
收藏
页码:34 / 37
页数:4
相关论文
共 1 条
[1]   一种SVM增量学习算法α-ISVM [J].
萧嵘 ;
王继成 ;
孙正兴 ;
张福炎 .
软件学报, 2001, (12) :1818-1824