线粒体外膜转运蛋白70在高糖高脂诱导的心脏微血管内皮细胞损伤中的作用

被引:8
作者
侯娟妮 [1 ,2 ]
杜劲 [2 ]
李秀川 [2 ]
陈莎 [2 ]
冯健 [1 ]
冯娟 [1 ]
田玥 [2 ]
杨怡 [2 ]
裴海峰 [2 ]
杨大春 [1 ,2 ]
机构
[1] 陆军军医大学(第三军医大学)研究生院
[2] 成都军区总医院心内科
基金
中国博士后科学基金;
关键词
心脏微血管内皮细胞; 高糖; 高脂; 线粒体外膜转运蛋白70; 氧化应激;
D O I
暂无
中图分类号
R587.2 [糖尿病性昏迷及其他并发症];
学科分类号
1002 ; 100201 ;
摘要
目的研究高糖高脂对小鼠心脏微血管内皮细胞(MCMECs)的影响以及线粒体外膜转运蛋白70(Tom70)的作用,并探讨相关机制。方法将MCMECs分为正常糖组(NG组,给予5.5mmol/L葡萄糖)、高糖组(HG组,给予25mmo1/L葡萄糖)和高糖高脂组(HG+HF组,给予25mmo1/L葡萄糖以及500μmol/L混合脂肪酸)。采用Tom70 siRNA敲低MCMECs中Tom70的表达,进一步将HG+HF组分为对照组(Control组仅转染试剂)、阴性对照siRNA组(Negative siRNA组,转染非特异性阴性Scramble siRNA)和Tom70-siRNA组。为探索Tom70在高糖高脂诱导的MCMECs损伤中的可能作用机制,将Tom70-siRNA组分为不含N-乙酰半胱氨酸(NAC)组和含NAC组。通过流式细胞仪检测各组细胞凋亡水平,ELISA试剂盒测定MCMECs中一氧化氮(NO)的生成,RT-q PCR和免疫荧光检测MCMECs中Tom70的表达变化,DHE染色法与ELISA法测定细胞内活性氧簇(ROS)的水平。结果高糖可增加MCMECs的凋亡、减少NO生成,而合并高脂可加重这些损伤(P<0.05)。高糖可抑制MCMECs中Tom70的表达,促进ROS生成(P<0.05);与HG组相比,高糖合并高脂可进一步抑制Tom70的表达,同时显著增加了ROS的生成(P<0.05)。更重要的是,与Control组和Negative siRNA组相比,Tom70-siRNA组胞内ROS含量和细胞凋亡率增加,NO生成显著减少(P<0.01)。与此相反,在此基础上加用抗氧化剂NAC部分逆转了上述MCMECs损伤(P<0.05)。结论高脂会进一步加重糖尿病MCMECs损伤,Tom70可能通过抑制氧化应激反应在糖尿病心脏微血管内皮损伤中发挥作用。
引用
收藏
页码:283 / 288
页数:6
相关论文
共 11 条
[1]   脂滴包被蛋白5对高糖高脂诱导的小鼠心脏微血管内皮细胞凋亡的影响及机制 [J].
杜劲 ;
侯娟妮 ;
李秀川 ;
杨怡 ;
冯健 ;
陈莎 ;
杨永健 ;
裴海峰 .
解放军医学杂志, 2017, (12) :1045-1050
[2]  
Featured Article: Oxidative stress status and liver tissue defenses in diabetic rats during intensive subcutaneous insulin therapy[J] . Stéphanie Dal,Nathalie Jeandidier,Elodie Seyfritz,William Bietiger,Claude Péronet,Fran?ois Moreau,Michel Pinget,Elisa Maillard,Séverine Sigrist.Experimental Biology and Medicine . 2016 (2)
[3]  
Prevalence of dyslipidemia and its control in type 2 diabetes: A multicenter study in endocrinology clinics of China[J] . Li Yan,Ming Tong Xu,Li Yuan,Bing Chen,Zhang Rong Xu,Qing Hua Guo,Qiang Li,Yu Duan,Jian Huang Fu,Yong Jian Wang,Miao Zhang,Zuo Jie Luo,Wei Gang Zhao,You Min Wang,Zhen Fang Yuan,Wei Qing Wang,Peng Hua Wang,Xing Wu Ran,Yan Jun Wang,Hua Zhang Yang,Ling Gao,Wei Qing Chen,Guang Ning.Journal of Clinical Lipidology . 2015
[4]  
Coronary Microvascular Dysfunction, Microvascular Angina, and Treatment Strategies[J] . Mark A. Marinescu,Adrián I. L?ffler,Michelle Ouellette,Lavone Smith,Christopher M. Kramer,Jamieson M. Bourque.JACC: Cardiovascular Imaging . 2015 (2)
[5]   Glucagon-Like Peptide-1 Protects Against Cardiac Microvascular Injury in Diabetes via a cAMP/PKA/Rho-Dependent Mechanism [J].
Wang, Dongjuan ;
Luo, Peng ;
Wang, Yabin ;
Li, Weijie ;
Wang, Chen ;
Sun, Dongdong ;
Zhang, Rongqing ;
Su, Tao ;
Ma, Xiaowei ;
Zeng, Chao ;
Wang, Haichang ;
Ren, Jun ;
Cao, Feng .
DIABETES, 2013, 62 (05) :1697-1708
[6]   Amelioration effects of berberine on diabetic microendothelial injury model by the combination of high glucose and advanced glycation end products in vitro [J].
Hao, Min ;
Li, Shu-yuan ;
Sun, Chang-kai ;
Jingyu-Xu ;
Lin, Yuan ;
Liu, Ke-xin ;
Wang, Li ;
Li, Chuan-xun ;
Zhou, Qin ;
Du, Jian-ling ;
Li, Hua .
EUROPEAN JOURNAL OF PHARMACOLOGY, 2011, 654 (03) :320-325
[7]  
Intensive Glucose Lowering and Cardiovascular Disease Prevention in Diabetes: Reconciling the Recent Clinical Trial Data[J] . Theodore Mazzone.Circulation . 2010 (21)
[8]   The Role of Adipose Tissue and Lipotoxicity in the Pathogenesis of Type 2 Diabetes [J].
Cusi, Kenneth .
CURRENT DIABETES REPORTS, 2010, 10 (04) :306-315
[9]  
Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial[J] . Faramarz Ismail-Beigi,Timothy Craven,Mary Ann Banerji,Jan Basile,Jorge Calles,Robert M Cohen,Robert Cuddihy,William C Cushman,Saul Genuth,Richard H Grimm,Bruce P Hamilton,Byron Hoogwerf,Diane Karl,Lois Katz,Armand Krikorian,Patrick O’Connor,Rodica Pop-Busui,Ulrich Schubart,Debra Simmons,Harris Taylor,Abraham Thomas,Daniel Weiss,Irene Hramiak.The Lancet . 2
[10]  
Life and Death in Denmark: Lessons About Diabetes and Coronary Heart Disease[J] . Allison B. Goldfine,Joshua A. Beckman.Circulation . 2008 (15)