稳定同位素法和涡度-微型蒸渗仪区分玉米田蒸散组分的比较

被引:17
作者
石俊杰 [1 ,2 ]
龚道枝 [3 ,4 ]
梅旭荣 [3 ]
马孝义 [1 ]
郝卫平 [3 ]
胡笑涛 [1 ]
机构
[1] 西北农林科技大学水利与建筑工程学院旱区农业水土工程教育部重点实验室
[2] 上海市水利工程设计研究院
[3] 中国农业科学院农业环境与可持续发展研究所作物高效用水与抗灾减损国家工程实验室
[4] 清华大学水利工程系水沙科学与水利水电工程国家重点实验室
关键词
蒸发蒸腾; 水汽; 动力学分析; 稳定同位素; 涡度相关; 微型蒸渗仪;
D O I
暂无
中图分类号
S513 [玉米(玉蜀黍)]; S237 [农用仪器、仪表及设备];
学科分类号
0901 ; 082801 ;
摘要
农田蒸散组分区分研究对理解土壤-植物-大气连续系统水分传输动力学过程与调控机制具有重要意义。利用稳定同位素原位连续观测技术测定了玉米田不同高度大气水汽稳定同位素的动态,结合Keeling Plot方法区分了玉米田蒸散组分动态过程,并与涡度相关系统(eddy covariance system,EC)-微型蒸渗仪(micro-lysimeter,MLS)结合法的区分结果进行了比较。研究表明:降雨后大气水汽稳定同位素组成δv显著降低,不同高度δv与大气饱和水气压差VPD、太阳净辐射Rn呈线性相关,相关系数R均值分别为0.65和0.51;土壤蒸发水汽稳定同位素组成δE存在显著的分馏效应,较低的土壤含水率和大气相对湿度会降低分馏效应;与传统的EC-MLS法的区分结果相比,利用Keeling Plot方法和连续原位监测的水汽稳定同位素信息,可准确估算农田蒸散比,误差仅为-0.02~0.08;试验观测期内即玉米中等覆盖地面后,IS法和EC-MLS确定的作物蒸腾与农田蒸散比的均值分别为0.81和0.78,二者较一致。
引用
收藏
页码:114 / 120
页数:7
相关论文
共 16 条
[1]   利用原位连续测定水汽δ18O值和KeelingPlot方法区分麦田蒸散组分 [J].
袁国富 ;
张娜 ;
孙晓敏 ;
温学发 ;
张世春 .
植物生态学报, 2010, 34 (02) :170-178
[2]  
土壤-植物-大气连续体水分传输理论及其应用[M]. 水利电力出版社 , 康绍忠等著, 1994
[3]  
Dynamics of evapotranspiration partitioning in a semi-arid forest as affected by temporal rainfall patterns[J] . Naama Raz-Yaseef,Dan Yakir,Gabriel Schiller,Shabtai Cohen.Agricultural and Forest Meteorology . 2012
[4]  
The use of stable isotopes to partition evapotranspiration fluxes into evaporation and transpiration[J] . Shichun Zhang,Xuefa Wen,Jianlin Wang,Guirui Yu,Xiaomin Sun.Acta Ecologica Sinica . 2010 (4)
[5]   Using the dual approach of FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region [J].
Er-Raki, S. ;
Chehbouni, A. ;
Boulet, G. ;
Williams, D. G. .
AGRICULTURAL WATER MANAGEMENT, 2010, 97 (11) :1769-1778
[6]   Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China [J].
Ding, Risheng ;
Kang, Shaozhong ;
Li, Fusheng ;
Zhang, Yanqun ;
Tong, Ling ;
Sun, Qingyu .
AGRICULTURAL WATER MANAGEMENT, 2010, 98 (01) :87-95
[7]  
Partitioning evapotranspiration across gradients of woody plant cover: Assessment of a stable isotope technique[J] . Wang, Lixin,Caylor, Kelly K.,Villegas, Juan Camilo,Barron-Gafford, Greg A.,Breshears, David D.,Huxman, Travis E..Geophysical Research Letters . 2010 (9)
[8]  
Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model[J] . Zhongmin Hu,Guirui Yu,Yanlian Zhou,Xiaomin Sun,Yingnian Li,Peili Shi,Yanfen Wang,Xia Song,Zemei Zheng,Li Zhang,Shenggong Li.Agricultural and Forest Meteorology . 2009 (9)
[9]  
Determining carbon isotope signatures from micrometeorological measurements: Implications for studying biosphere–atmosphere exchange processes[J] . T. J. Griffis,J. Zhang,J. M. Baker,N. Kljun,K. Billmark.Boundary-Layer Meteorology . 2007 (2)
[10]  
Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques[J] . D.G. Williams,W. Cable,K. Hultine,J.C.B. Hoedjes,E.A. Yepez,V. Simonneaux,S. Er-Raki,G. Boulet,H.A.R. de Bruin,A. Chehbouni,O.K. Hartogensis,F. Timouk.Agricultural and Forest Meteorology . 2004 (3)