对称阵稀疏主成分分析及其在充分降维问题中的应用

被引:3
作者
邵伟 [1 ]
祝丽萍 [2 ]
刘福国 [2 ]
王秋平 [2 ]
机构
[1] 山东大学数学学院
[2] 昌吉学院数学系
关键词
对称阵; 主成分分析; 稀疏主成分分析; 充分降维; 蒙特卡洛; LASSO;
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
讨论了对称阵的稀疏主成分分析,并给出估计的渐近结果。基于蒙特卡洛分析的模拟实验展示了在充分降维中稀疏主成分的优势。
引用
收藏
页码:116 / 120+126 +126
页数:6
相关论文
共 13 条
[1]  
The adaptive lasso and its oracle properties. Zou H. Journal of the American Statistical Association . 2006
[2]  
Dimension Reduction Based on Cnonical Correlation. Fung W.K,,He X.M,,Liu L,,Shi P. D. Statistica Sinica . 2002
[3]  
Loading and correlations in the interpretation of principle compenents. JOLLIFFE I. Journal of Applied Mechanics . 1995
[4]  
A sparse eigen-decomposition estimation in semiparametricn regression. ZHU Liping,YU Zhou,ZHU Lixing. Computa-tional Statistics and Data Analysis . 2010
[5]  
On the asymptotics of constrained M-estimation. GEYER C. The Annals of Statistics . 1994
[6]  
Principal component analysis. JOLLIFFE I. . 2010
[7]  
Simple principal components. VINES S. Journal of the Royal Statistical Society:Series C (Applied Statistics) . 2000
[8]  
Sparse sufficient dimension reduction. Li L X. Biometrika . 2007
[9]  
Regression shrinkage and selection via the lasso. Tibshirani,R. Journal of the Royal Statistical Society Series B Statistical Methodology . 1996
[10]  
Principal variables. G. P. McCabe. Technometrics . 1984