Freeze concentration has great potential in treating wastewaters containing soluble pollutions. It is important for freeze concentration process to produce ice crystals with large size and high purity. In this work raw urines of 4660-7914 mg/L in COD, 512.71-872.41 mg/L in NH3-N and 22600-28800 μs/cm in electric conductivity were studied. Urines were frozen by a digital refrigerated circulator bath. Ice crystals were purified by ice-water steep and vacuum filtration. The COD, NH3-N, and electric conductivity levels of the melted ices were measured to reflect ice crystal purity. Effects of coolant temperature, ice crystal shape, initial solution temperature, solution concentration, ice seeding, re-crystallization process and crystallization time on ice crystal purity were analyzed. The results show that an appropriate coolant temperature, suspended ice crystals, an initial solution temperature of about 6 ℃, introduction of seed ice, addition of re-crystallization process, and crystallization time of less than 30 min are in favor of producing ice crystals with high purity. Under such conditions, more than 99 percent of inorganic salts, COD and NH3-N sources in raw urine could be removed.