基于Curvelet变换的多尺度性识别裂缝发育带

被引:16
作者
张广智 [1 ]
郑静静 [2 ]
印兴耀 [1 ]
机构
[1] 中国石油大学(华东)
[2] 中国石化胜利油田分公司物探研究院
关键词
Curvelet变换; 多尺度性; 多方向性; 方位各向异性; 裂缝发育带; 走向;
D O I
10.13810/j.cnki.issn.1000-7210.2011.05.016
中图分类号
P631.4 [地震勘探];
学科分类号
0818 ; 081801 ; 081802 ;
摘要
本文以Curvelet变换为基础,提出了一种预测断层和裂缝发育带的方法。基于Curvelet变换的多尺度性、多方向性和强局部化功能,在曲波域中给出了不同的重构系数,得到突出不同频带和不同方位的地震数据体,然后结合相干体边缘检测技术,对断裂和裂缝发育带及其走向进行预测。通过模型和实际地震资料应用说明了方法的有效性。
引用
收藏
页码:757 / 762+836+664 +836
页数:8
相关论文
共 12 条
[1]  
Wave speeds and attenuation of elastic waves in material containing cracks. Hudson JA. Geophysical Journal . 1981
[2]  
Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping. Gersztenkorn A,Marfurt K J. Geophysics . 1999
[3]  
Fast discrete curvelet transforms. E.J.Candes,,L.Demanet,,D.L.Donoho et al. Multiscale Model.Simul . 2006
[4]  
Fast Ridgelet Tranforms in Dimension 2. D. L. Donoho. Stanford University, Dept. Statist. Standford, CA, Tech. Rep . 1997
[5]  
Carbonate Seismology,Geophysical Developments Series No.6. Ibrahi m P,Marfurt KJ,Kurt J M. . 1997
[6]  
Ridgelets: a key to higher-dimensional intermittency?[J] . Candè,s Emmanuel J.,Donoho David L.. &nbspPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences . 1999 (1760)
[7]   基于Curvelet变换的多尺度分析技术 [J].
郑静静 ;
印兴耀 ;
张广智 .
石油地球物理勘探, 2009, 44 (05) :543-547+521
[8]  
Ridgelets: theory and applications. Candes E J. . 1998
[9]  
Curvelets- a surprisingly effectively nonadaptive representation for objects with edges. Candès EJ,Donoho D L. Curve and Surface Fitting . 1999
[10]  
Ridgelets: a key to higher-dimensional intermittency. Candes E J,Donoho D L. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences . 1999