基于混合遗传-Nelder Mead单纯形算法的源强及位置反算

被引:16
作者
张建文 [1 ,2 ]
王煜薇 [1 ]
郑小平 [1 ]
王正 [2 ]
机构
[1] 北京化工大学安全管理研究所
[2] 中国石油化工股份有限公司化学品安全控制国家重点实验室
关键词
混合遗传-Nelder Mead单纯形算法; 源强反算; 初值; 误差; 多维变量;
D O I
暂无
中图分类号
X928.5 [化学物质致因事故];
学科分类号
摘要
确定泄漏源的位置和强度,是进行群体疏散和应急决策的基础.将扩散模型得到的浓度值与传感器观测的浓度值进行比较并建立混合遗传-Nelder Mead单纯形算法模型,反算得到泄露源的位置和强度,进而利用浓度的模拟数据验证该算法的可行性.研究结果表明:混合遗传-NelderMead单纯形算法不受初值选取的影响,即使初值远离期望值,也能得到很好的结果,而且能以较小的误差和较快的速度反算出结果,更适合于多维变量的搜索.因此混合遗传-Nelder Mead单纯形算法能够快速准确地反算得到泄漏源的位置和强度,满足应急决策的需要.
引用
收藏
页码:1581 / 1587
页数:7
相关论文
共 10 条
  • [1] 危险化学品泄漏事故泄漏源强反算方法比较研究
    张建文
    刘茜
    魏利军
    [J]. 中国安全科学学报, 2009, 19 (02) : 165 - 171
  • [2] Source identification for unsteady atmospheric dispersion of hazardous materials using Markov Chain Monte Carlo method[J] . Shaodong Guo,Rui Yang,Hui Zhang,Wenguo Weng,Weicheng Fan.International Journal of Heat and Mass Transfer . 2009 (17)
  • [3] Pollution source identification using a coupled diffusion model with a genetic algorithm
    Khlaifi, Anis
    Ionescu, Anda
    Candau, Yves
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (12) : 3500 - 3510
  • [4] Stochastic event reconstruction of atmospheric contaminant dispersion using Bayesian inference
    Senocak, Inanc
    Henuartner, Nicolas W.
    Short, Margaret B.
    Daniel, W. Brent
    [J]. ATMOSPHERIC ENVIRONMENT, 2008, 42 (33) : 7718 - 7727
  • [5] Source inversion for contaminant plume dispersion in urban environments using building-resolving simulations
    Chow, Fotini Katopodes
    Kosovic, Branko
    Chan, Stevens
    [J]. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2008, 47 (06) : 1553 - 1572
  • [6] Adjoint inverse modeling of CO emissions over Eastern Asia using four-dimensional variational data assimilation
    Yumimoto, Keiya
    Uno, Itsushi
    [J]. ATMOSPHERIC ENVIRONMENT, 2006, 40 (35) : 6836 - 6845
  • [7] A variational finite element method for source inversion for convective–diffusive transport[J] . Finite Elements in Analysis & Design . 2003 (8)
  • [8] Modeling and prediction of environmental data in space and time using Kalman filtering
    Heemink, AW
    Segers, AJ
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2002, 16 (03) : 225 - 240
  • [9] 4D-variational data assimilation with an adjoint air quality model for emission analysis[J] . H. Elbern,H. Schmidt,O. Talagrand,A. Ebel.Environmental Modelling and Software . 2000 (6)
  • [10] Artificial neural network for the identification of unknown air pollution sources
    Reich, SL
    Gomez, DR
    Dawidowski, LE
    [J]. ATMOSPHERIC ENVIRONMENT, 1999, 33 (18) : 3045 - 3052