分布式密度和中心点数据流聚类算法的研究

被引:7
作者
高宏宾
侯杰
刘劲飞
机构
[1] 五邑大学计算机学院
基金
广东省自然科学基金;
关键词
密度; 中心点; 分布式; 数据流聚类;
D O I
暂无
中图分类号
TP311.13 [];
学科分类号
1201 ;
摘要
分析分布式数据流聚类算法的基本框架结构,针对CluStream算法对非球形聚类效果不佳提出一种基于密度和中心点的分布式数据流聚类算法DDCS-Clustering(Distributed Density and Centers Stream Clustering)。该算法应用密度、中心点与衰减时间窗口,在分布式环境下对数据流进行聚类。实验结果表明,DDCS-Clustering算法具有较高的聚类质量与较低的通信代价。
引用
收藏
页码:181 / 184
页数:4
相关论文
共 8 条
[1]  
Distributed Data Streams. Minos Garofalakis. http://www.softnet.tuc.gr/-minos/Papers/eds09dstreams.pdf .
[2]   基于衰减窗口与剪枝维度树的实时数据流聚类 [J].
张晓龙 ;
曾伟 .
计算机应用研究, 2009, 26 (04) :1331-1334+1341
[3]  
MOA: Massive Online Analysis. Bifet, Albert,Holmes, Geoff,Kirkby, Richard,Pfahringer, Bernhard. Journal of Machine Learning Research . 2010
[4]  
A framework for clustering evolving data streams. Aggarwal C C,Han J,Wang J,et al. Proceedings of the 29th International Conference on Very Large Data Bases . 2003
[5]  
Data Streams Clustering Algorithm Based on Grid and Particle Swarm Optimization. Luo Ke,Wang Lin. 2009-International Forum on Computer Science-Technology and Applications .
[6]  
Density Micro-Clusteirng Algorithms on Data Streams:A Review. Amineh Amini,The Ying Wah. Proceedings of the International MultiConference of Engineers and Computer Scientists 2011IMECS 2011 . 2011
[7]  
A Density Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Martin Ester,Hans-Peter Kriegel,Jorg Sander,et al. Proceedings of 2ndInternational Conference on Knowledge Discovery and Data Mining (KDD- 96) .
[8]  
Analysis of Machine Learning Algorithms using WEKA. Aadtiya Desai,Dr.Sunil Rai. International Journal of Computer Applications .