FUSAR-Ship:building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition

被引:14
作者
Xiyue HOU [1 ]
Wei AO [1 ]
Qian SONG [1 ]
Jian LAI [2 ]
Haipeng WANG [1 ]
Feng XU [1 ]
机构
[1] Key Lab for Information Science of Electromagnetic Waves (MoE), Fudan University
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
FUSAR-Ship; Gaofen-3; SAR-AIS matchup; automatic target recognition; multi-scale CFAR; deep learning;
D O I
暂无
中图分类号
U675.79 [新技术在航海上的应用]; TN957.52 [数据、图像处理及录取]; TP18 [人工智能理论];
学科分类号
080904 ; 0810 ; 081001 ; 081002 ; 081104 ; 081105 ; 0812 ; 0825 ; 0835 ; 1405 ;
摘要
Gaofen-3(GF-3) is China’s first civil C-band fully polarimetric spaceborne synthetic aperture radar(SAR) primarily missioned for ocean remote sensing and marine monitoring. This paper proposes an automatic sea segmentation, ship detection, and SAR-AIS matchup procedure and an extensible marine target taxonomy of 15 primary ship categories, 98 sub-categories, and many non-ship targets. The FUSARShip high-resolution GF-3SAR dataset is constructed by running the procedure on a total of 126 GF-3 scenes covering a large variety of sea, land, coast, river and island scenarios. It includes more than 5000 ship chips with AIS messages as well as samples of strong scatterer, bridge, coastal land, islands, sea and land clutter. FUSAR-Ship is intended as an open benchmark dataset for ship and marine target detection and recognition. A preliminary 8-type ship classification experiment based on convolutional neural networks demonstrated that an average of 79% test accuracy can be achieved.
引用
收藏
页码:40 / 58
页数:19
相关论文
共 12 条
  • [1] Extraction of a target in sea clutter via signal decomposition[J]. Zhiyu SHAO,Jiangheng HE,Shunshan FENG.Science China(Information Sciences). 2020(02)
  • [2] 高分辨率SAR船只样本集构建与特征分析
    包萌
    张杰
    孟俊敏
    张晰
    郎海涛
    [J]. 电波科学学报, 2019, 34 (06) : 789 - 797
  • [3] Advanced technology of high-resolution radar: target detection, tracking, imaging, and recognition
    Teng LONG
    Zhennan LIANG
    Quanhua LIU
    [J]. ScienceChina(InformationSciences), 2019, 62 (04) : 5 - 30
  • [4] 深度学习在SAR目标识别与地物分类中的应用
    徐丰
    王海鹏
    金亚秋
    [J]. 雷达学报, 2017, 6 (02) : 136 - 148
  • [5] Decision tree support vector machine based on genetic algorithm for multi-class classification[J]. Huanhuan Chen, Qiang Wang, and Yi Shen School of Astronautics, Harbin Institute of Technology, Harbin 150001, P. R. China.Journal of Systems Engineering and Electronics. 2011(02)
  • [6] A survey on object detection in optical remote sensing images[J] . Gong Cheng,Junwei Han.ISPRS Journal of Photogrammetry and Remote Sensin . 2016
  • [7] Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J] . Gong Cheng,Junwei Han,Peicheng Zhou,Lei Guo.ISPRS Journal of Photogrammetry and Remote Sensing . 2014
  • [8] The Pascal Visual Object Classes (VOC) Challenge
    Everingham, Mark
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) : 303 - 338
  • [9] ALGORITHMS FOR THE ASSIGNMENT AND TRANSPORTATION PROBLEMS
    MUNKRES, J
    [J]. JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1957, 5 (01): : 32 - 38
  • [10] Automatic ship detection based on retinanet using multi-resolution Gaofen-3imagery .2 Wang Y,Wang C,Zhang H,et al. Remote Sens . 2019