多输入模糊神经网络结构优化的快速算法

被引:6
作者
吴艳辉
陈雄
机构
[1] 复旦大学电子工程系
[2] 复旦大学电子工程系 上海
[3] 上海
关键词
模糊系统; 神经网络; 模糊神经网络; 竞争算法; 结构学习; 参数学习;
D O I
10.15943/j.cnki.fdxb-jns.2005.01.011
中图分类号
TP183 [人工神经网络与计算];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
采用规则前件提取,以获得较少的高效规则,对模糊神经网络(FuzzyNeuralNetwork)进行结构优化,解决了在多输入模糊系统中因规则数多导致的结构庞大问题,使之适用于多输入模糊系统.结构学习中采用竞争算法优化隶属函数,保证规则前件提取的高效;参数学习中采用梯度下降法调整网络参数.
引用
收藏
页码:56 / 60+64 +64
页数:6
相关论文
共 9 条
[1]  
Cancer diagnosis via linear programming. Mangasarian O L,Wolberg W H. SIAM News . 1990
[2]  
Neuralnetworksapproachtoruleextraction. IshikawaM. ArtificialNeuralNetworksandExpertSystems,1995.Proceedings,SecondNewZealandInternationalTwo StreamConference . 1995
[3]  
Fuzzy identification of system and its application to modeling and control. Takagi T,Sugeno M. IEEE Transactions on Systems Man and Cybernetics . 1985
[4]  
Generating fuzzy rules by learning from examples. Wang L X,Mendel J. IEEE Transactions on Systems Man and Cybernetics . 1992
[5]  
Fuzzy rules extraction directly from numerical data for function approximation. Abe S. IEEE Transactions on Systems Man and Cybernetics . 1995
[6]  
A method for fuzzy rules extraction directly from numerical data and its application to pattern classification. Abe S,Lan M. IEEE Transactions on Fuzzy Systems . 1995
[7]  
Neural-network-based fuzzy logic control and decision system. Lin C T,Lee C S G. IEEE Transactions on Computers . 1991
[8]  
Input selection and partition validation for fuzzy modeling using neural network. Linkens D A,Chen M Y. Fuzzy Sets and Systems . 1999
[9]  
Induction of fuzzy decision trees. Yuan Y,Shaw M J. Fuzzy Sets and Systems . 1995