位置服务社交网络用户行为相似性分析

被引:26
作者
袁书寒
陈维斌
傅顺开
机构
[1] 华侨大学计算机科学与技术学院
关键词
用户相似性; 轨迹相似性; 基于位置的服务; 空间数据挖掘; 聚类;
D O I
暂无
中图分类号
TP393.09 [];
学科分类号
080402 ;
摘要
基于位置的社交网络(LBSN)能够支持用户分享地理位置信息,网站中保存用户访问真实世界地理位置的记录构成用户的行为轨迹,但LBSN用户相似性的分析并没有从用户的地理位置轨迹上加以考虑。为此,提出基于划分层次,在不同的邻域半径下密度聚类的方法,探索基于位置的服务(LBS)平台上用户地理位置上相似性的度量。该方法在不同空间位置比例尺下观察用户访问各个聚类区域的次数,进而利用向量空间模型(VSM)计算用户在各个层级的相似性,最终以不同权重叠加各层级的用户相似性值,得出用户在地理空间行为上的相似性。基于国内某大型位置社交网站真实用户数据的实验结果表明,该方法能有效识别出访问地理位置相似的用户。
引用
收藏
页码:322 / 325
页数:4
相关论文
共 11 条
[1]  
SCELLATO S,MASCOLO C.Measuring user activity on an online location-based social network. Proceedings of Third Interna-tional Workshop on Network Science for Communication Networks . 2011
[2]  
LI Q,ZHENG Y,XIE X,et al.Mining user similarity based on lo-cation history. Proceedings of the16th ACM SIGSPATIAL In-ternational Conference on Advances in Geographic Information Sys-tems . 2008
[3]  
LEE R,SUMIYA K.Measuring geographical regularities of crowd behaviors for Twitter-based geo-social event detection. Pro-ceedings of the2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks . 2010
[4]  
CHO E,MYERS S A,LESKOVEC J.Friendship and mobility:Us-er movement in location-based social networks. Proceedings of the17th ACM SIGKDD International Conference on Knowledge Dis-covery and Data Mining . 2011
[5]  
Benevenutoy F,Rodriguesy T,Cha M. et al.Characterizing User Behavior in Online Social Networks. Proceedings of the ACM SIGCOMM Internet Measurement Conference (IMC) . 2009
[6]  
LEE M-J,CHUNG C-W.A user similarity calculation based on thelocation for social network services. DASFAA’’11:Proceedings of the16th International Conference on Database Systems for Ad-vanced Applications . 2011
[7]  
NOULAS A,SCELLATO S,MASCOLO C,et al.An empirical study of geographic user activity patterns in foursquare. ICWSM11:Fifth International AAAI Conference on Weblogs and Social Media . 2011
[8]  
HUNG C-C,CHANG C-W,PENG W-C.Mining trajectory profiles for discovering user communities. Proceedings of the2009In-ternational Workshop on Location Based Social Networks . 2009
[9]  
Ester M,Kriegel H P,Sander J,et al.A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining . 1996
[10]  
P-N Tan,M Steinbach,V Kumar.Introduction to data mining. . 2006