利用抽样技术分布式开采可变精度的关联规则

被引:11
作者
王春花
黄厚宽
机构
[1] 北方交通大学计算机科学技术系人工智能研究所!北京,北方交通大学计算机科学技术系人工智能研究所!北京
关键词
数据开采; 分布式算法; 抽样; 元学习; 可变精度的关联规则;
D O I
暂无
中图分类号
TP311 [程序设计、软件工程];
学科分类号
081202 ; 0835 ;
摘要
关联规则是数据开采的重要研究内容 .利用抽样及元学习技术提出一种快速的分布式开采可变精度的关联规则算法 .为了能获得更准确的结果 ,还给出采用适当缩小最小支持度和扩大全局检测的候选项集等技术的若干改进算法 .最后给出这种方法与类似方法的比较情况 .算法具有效率高和通信量小的特点 ,尤适合于效率比准确性要求更高的场合 .
引用
收藏
页码:1101 / 1106
页数:6
相关论文
共 8 条
[1]  
A fast distributed algorithm for mining association rules. Cheung DW,Han Jiawei,et al. Proceedings of IEEE 4th International Conference Parallel and Distributed Information Systems . 1996
[2]  
An efficient algorithm for mining association rules in large databases. Savasere A,Omiecinski E,Navathe S. Proceedings of the 21st international conference on very large databases . 1995
[3]  
Sampling large databases for association rules. H.Toivonen. Proceedings of the 22nd International Conference on Very Large Database . 1996
[4]  
An effective hash-based algorithm for mining association rules. Park J S,Chen M S,Yu P S. Proceedings of the 1995 ACM SIGMOD international conference on Management of data . 1995
[5]  
Stock movement and n-dimensional inter-transaction association rules. Hongjun Lu,Jiawei Han,Ling Feng. Proceedings of ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery . 1998
[6]  
Fast Discovery of Association Rules. Agrawal R,Mannila H,Srikant R,et al. Advances in Knowledge Discovery and Data Mining . 1996
[7]  
Mining association rules between sets of items in large databases. Agrawal R,Imielinski T,Swami A. Proceedings of the 1993 ACM SIGMOD International Confererice on Management of Data . 1993
[8]  
An extensible meta-learning approach for scalable and accurate inductive learning[Phd dissertation]. Chan P. . 1996