将Vapnik提出的支持向量机(Support Vector Machine,SVM)算法用于总结头发中多种微量元素含量与高血压的对应关系的结果。通过对26个高血压患者和27个健康人的头发样品的多种微量元素的定量分析,用支持向量机研究头发微量元素与高血压的相关性,结果表明:若以头发中Al,Cu,Zn,Ca,Mg含量以及Zn/Cu比作为特征量集合作数据挖掘,所建数学模型对高血压患者与健康人的正确分类率可达96.2%,留一法预报正确率则可达86.7%。计算表明:支持向量机算法建模的正确分类率和留一法预报正确率均较Fisher法和KNN法等传统的模式识别算法高。因此,SVM算法是特别适合于用有限已知样本训练建模,进而预报未知样本属性的新算法,并可望在化学计量学领域得到进一步的应用。