遥感图像飞机目标分类的卷积神经网络方法

被引:41
作者
周敏 [1 ]
史振威 [1 ]
丁火平 [2 ]
机构
[1] 北京航空航天大学宇航学院图像中心
[2] 航天恒星科技有限公司
关键词
可见光遥感; 飞机; 分类; 深度学习; 卷积神经网络;
D O I
暂无
中图分类号
TP183 [人工神经网络与计算]; TP751 [图像处理方法];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ; 081002 ;
摘要
目的遥感图像飞机目标分类,利用可见光遥感图像对飞机类型进行有效区分,对提供军事作战信息有重要意义。针对该问题,目前存在一些传统机器学习方法,但这些方法需人工提取特征,且难以适应真实遥感图像的复杂背景。近年来,深度卷积神经网络方法兴起,网络能自动学习图像特征且泛化能力强,在计算机视觉各领域应用广泛。但深度卷积神经网络在遥感图像飞机分类问题上应用少见。本文旨在将深度卷积神经网络应用于遥感图像飞机目标分类问题。方法在缺乏公开数据集的情况下,收集了真实可见光遥感图像中的8种飞机数据,按大致4∶1的比例分为训练集和测试集,并对训练集进行合理扩充。然后针对遥感图像与飞机分类的特殊性,结合深度学习卷积神经网络相关理论,有的放矢地设计了一个5层卷积神经网络。结果首先,在逐步扩充的训练集上分别训练该卷积神经网络,并分别用同一测试集进行测试,实验表明训练集扩充有利于网络训练,测试准确率从72.4%提升至97.2%。在扩充后训练集上,分别对经典传统机器学习方法、经典卷积神经网络Le Net-5和本文设计的卷积神经网络进行训练,并在同一测试集上测试,实验表明该卷积神经网络的分类准确率高于其他两种方法,最终能在测试集上达到97.2%的准确率,其余两者准确率分别为82.3%、88.7%。结论在少见使用深度卷积神经网络的遥感图像飞机目标分类问题上,本文设计了一个5层卷积神经网络加以应用。实验结果表明,该网络能适应图像场景,自动学习特征,分类效果良好。
引用
收藏
页码:702 / 708
页数:7
相关论文
共 2 条
[1]   基于位平面图像与2DMSLDA的单样本人脸识别 [J].
刘永俊 ;
常晋义 ;
陈才扣 ;
杨静宇 .
计算机工程与应用, 2010, (15) :172-175
[2]  
Aircraft Recognition in High-Resolution Optical Satellite Remote Sensing Images. Wu Q,Sun H,Sun X, et al. Geoscience and Remote Sensing Letters, IEEE . 2015