基于粒子滤波的神经网络学习算法

被引:11
作者
陈养平
王来雄
黄士坦
机构
[1] 西安微电子技术研究所
关键词
粒子滤波; 神经网络学习; UKF;
D O I
暂无
中图分类号
TP183 [人工神经网络与计算];
学科分类号
摘要
为了克服一般神经网络学习方法易陷入局部极小值的缺陷,提出一种新的基于粒子滤波的神经网络学习算法.采用无迹卡尔曼滤波(Unscented Kalman Filter,UKF)产生粒子,以较少的粒子逼近状态的后验概率分布,搜索到经验风险函数的最小值.此方法适用于在线的、非线性的、非高斯的神经网络学习.仿真结果表明,该学习方法与同类方法相比,性能明显提高.
引用
收藏
页码:86 / 88
页数:3
相关论文
共 7 条
  • [1] Sequential Monte Carlo Methods for Optimisation ofNeural Network Models. JFG de Freitas,Niranjan M,Gee AH,Doucet A. http://www-sigproc.eng.cam.ac.uk/smc/papers.html,2002-12-06/ . 2005
  • [2] Extended Kalman filter learning al-gorithm for hyper-complex multi-layered neural net-works. Rughooputh H. IEEE Proc . 1999
  • [3] Issues in Bayesian analysis ofneural network models. Miiller P,Insua R. Neural Computation . 1998
  • [4] Sequential Monte Carlo formodel selection and estimation of neural networks. Andrieu C,,Freitas N D. IEEE International Conference on Acoustics Speech and Signal Processing Proceedings . 2000
  • [5] Novel ap-proach to nonlinear/non-Gussian Bayesian state esti-mation. Gordon N J,,Salmond D J,Smith A F M. IEEE Proc.F,Radar Signal Process . 1993
  • [6] Bayesian Learning for Neural Networks. Real R M. Lecture Notes in Statistics . 1996
  • [7] The Unscented Particle Fil-ter. Rudolph van der Merwe. http://speech.bme.ogi.edu/publi-cations/ps/merwe00.pdf,2000-08-12 . 2005