基于测绘卫星影像的城市不透水面提取附视频

被引:9
作者
邵振峰 [1 ,2 ]
张源 [1 ]
周伟琪 [3 ]
宋杨 [4 ]
机构
[1] 武汉大学测绘遥感信息工程国家重点实验室
[2] 测绘遥感信息工程国家重点实验室深圳研发中心
[3] 武汉大学资源与环境科学学院
[4] 广州市城市规划勘测设计研究院
基金
中央高校基本科研业务费专项资金资助;
关键词
不透水面; 随机森林; 高分辨率遥感; 海绵城市;
D O I
暂无
中图分类号
P237 [测绘遥感技术];
学科分类号
1404 ;
摘要
针对城市大尺度的不透水面提取需求,以高分辨率遥感影像为数据源,基于随机森林模型,对光谱和纹理特征进行重要性分析,选出最优参数,实现高精度城市不透水面提取。选取武汉市作为实验区,以资源3号卫星遥感影像为数据源,不透水面提取的总体精度为0.97,所提取的高精度不透水面可为海绵城市的规划和建设提供有效的专题数据。
引用
收藏
页码:1 / 6
页数:6
相关论文
共 22 条
  • [1] Annual dynamics of impervious surface in the Pearl River Delta, China, from 1988 to 2013, using time series Landsat imagery[J] . Lei Zhang,Qihao Weng.ISPRS Journal of Photogrammetry and Remote Sensin . 2016
  • [2] Characterizing the magnitude, timing and duration of urban growth from time series of Landsat-based estimates of impervious cover[J] . Xiao-Peng Song,Joseph O. Sexton,Chengquan Huang,Saurabh Channan,John R. Townshend.Remote Sensing of Environment . 2015
  • [3] Impervious surface extraction in urban areas from high spatial resolution imagery using linear spectral unmixing[J] . Jian Yang,Peijun Li.Remote Sensing Applications: Society and Environm . 2015
  • [4] Extending the vegetation–impervious–soil model using simulated EnMAP data and machine learning[J] . Akpona Okujeni,Sebastian van der Linden,Patrick Hostert.Remote Sensing of Environment . 2015
  • [5] Integrating multiple texture methods and NDVI to the Random Forest classification algorithm to detect tea and hazelnut plantation areas in northeast Turkey
    Akar, O.
    Gungor, O.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (02) : 442 - 464
  • [6] Random forests: from early developments to recent advancements[J] . Khaled Fawagreh,Mohamed Medhat Gaber,Eyad Elyan.Systems Science & Control Engineering: An Open Ac . 2014 (1)
  • [7] Improving the impervious surface estimation with combined use of optical and SAR remote sensing images[J] . Yuanzhi Zhang,Hongsheng Zhang,Hui Lin.Remote Sensing of Environment . 2014
  • [8] Improving the accuracy of rainfall rates from optical satellite sensors with machine learning — A random forests-based approach applied to MSG SEVIRI[J] . Meike Kühnlein,Tim Appelhans,Boris Thies,Thomas Nauss.Remote Sensing of Environment . 2014
  • [9] Estimating deforestation in tropical humid and dry forests in Madagascar from 2000 to 2010 using multi-date Landsat satellite images and the random forests classifier[J] . Clovis Grinand,Fety Rakotomalala,Valéry Gond,Romuald Vaudry,Martial Bernoux,Ghislain Vieilledent.Remote Sensing of Environment . 2013
  • [10] Rule-based impervious surface mapping using high spatial resolution imagery
    Xu, Hanqiu
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (01) : 27 - 44