基于自动问答系统的信息检索技术研究进展

被引:10
作者
汤庸 [1 ]
林鹭贤 [1 ]
罗烨敏 [1 ]
潘炎 [2 ]
机构
[1] 中山大学计算机科学系
[2] 中山大学软件学院
基金
广东省自然科学基金;
关键词
自动问答; 信息检索; 自然语言处理; 查询扩展;
D O I
暂无
中图分类号
TP391.3 [检索机];
学科分类号
081203 ; 0835 ;
摘要
自动问答是根据用户以自然语言提出的问题给出一个明确的答案。近年来,自动问答越来越受到信息检索和自然语言处理的研究者的关注。典型的自动问答系统通常包含问题分析、文段检索和答案选择等部件。介绍了自动问答的最新研究进展和相关国际会议情况,着重阐述问题分类、查询扩展、文段检索和答案选择这四个热点技术的主要功能和常用方法,最后提出存在的一些问题和展望。
引用
收藏
页码:2745 / 2748
页数:4
相关论文
共 15 条
[1]  
Probabilistic model for defini-tional question answering. HAN K.S,SONG Y I,RIM H C. Proceedings of the 29th Annual In-ternational ACM SIGIR Conference on Research and Developmentin Information Retrieval . 2006
[2]  
Building a question answering testcollection. VOORHEES E M,TICE D M. Proceedings of the 23rd Annual International ACMSIGIR Conference on Research and Development in Information Re-trieval . 2000
[3]  
The Text REtrieval Conference(TREC). TREC. http://trec.nist.gov/ . 2008
[4]  
Question classification using support vectormachines. ZHANG D,LEE W S. Proceedings of the 26th Annual International ACMSIGIR Conference on Research and Development in Information Re-trieval . 2003
[5]  
Efficient convolution kernels for dependency andconstituent syntactic trees. MOSCHITTI A. Proceedings of the 17th EuropeanConference on Machine Learning . 2006
[6]  
Learning question classifiers:The role of semanticinformation. LI X,ROTHD. Journal of Natural Language Engineering . 2005
[7]  
Question classificationwith log-linear models. BLUNSOM P,KOCIK K,CURRAN J R. Proceedings Of the 29th Annual Inter-national ACM SIGIR Conference on Research and Development inInformation Retrieval . 2006
[8]  
Quantitative evaluation of pas-sage retrieval algorithms for question answering. TELLEX S,KATZ B,LIN J,et al. Proceedings ofthe 26th Annual International ACM SIGIR Conference on Researchand Development in Information Retrieval . 2003
[9]  
Mining dependency relations forquery expansion in passage retrieval. SUN R,ONG C H,CHUA T S. Proceedings of the 29thAnnual International ACM SIGIR Conference on Research and De-velopment in Information Retrieval . 2006
[10]  
Latent concept expansion using Markovrandom fields. METZLER D,CROFTWB. Proceedings of the 30th Annual InternationalACMSIGIR Conference on Research and Development in Informa-tion Retrieval . 2007