基于修正PCNN的多传感器图像融合方法

被引:12
作者
李敏
蔡骋
谈正
机构
[1] 西安交通大学电信学院信息工程研究所
关键词
多传感器图像融合; 脉冲耦合神经网络; 参数设定; 客观评价准则;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
多传感器图像融合技术作为信息融合的重要分支和研究热点,已广泛应用在机器视觉、医疗诊断、军事遥感等领域。为了更好地进行多传感器图像融合,将在图像分割、目标识别等领域具有独特优势的脉冲耦合神经网络(pulse coupled neural network,PCNN)引入到多传感器图像融合领域中来,提出了一种基于修正PCNN的多源图像融合方法,该方法在区域分割的基础上,先提取区域特征,然后由特征指导融合过程;同时,从目标区域相对于背景的显著性出发,提出了一种反映目标区域突出性的新特征,并针对传统PCNN参数无法自动设定的难题,提出了基于修正PCNN的参数自动设定方案。实验结果表明,该方法无论在主观视觉效果,还是客观评价参数上均优于基于多分辨分析的融合算法,且克服了传统像素级融合方法中融合图像模糊、对噪声敏感等不足,尤其适用于图像不能严格配准的应用场合。这对于拓宽PCNN的理论研究和实际应用具有一定价值。
引用
收藏
页码:284 / 290
页数:7
相关论文
共 5 条
[1]   一种基于交叉熵的改进型PCNN图像自动分割新方法 [J].
刘勍 ;
马义德 ;
钱志柏 .
中国图象图形学报, 2005, (05) :579-584
[2]   一种基于简化PCNN的自适应图像分割方法 [J].
毕英伟 ;
邱天爽 .
电子学报, 2005, (04) :647-650
[3]   一种基于脉冲耦合神经网络和图像熵的自动图像分割方法 [J].
马义德 ;
戴若兰 ;
李廉 .
通信学报, 2002, (01) :46-51
[4]   基于视觉特性的图象分割编码算法 [J].
黄继武 ;
戴宪华 .
中国图象图形学报, 1999, (05) :45-49
[5]  
Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex[J] . R. Eckhorn,H. J. Reitboeck,M. Arndt,P. Dicke.Neural Computation . 1990 (3)