Semiparametric Regression and Model Refining

被引:17
作者
SUN Haiyan WU Yun
机构
关键词
model error; systematric error; semiparametric regression; model refine; regularizer matrix; smoothing parameter;
D O I
暂无
中图分类号
O213 [应用统计数学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents a semiparametric adjustment method suitable for general cases.Assuming that the regularizer matrix is positive definite,the calculation method is discussed and the corresponding formulae are presented.Finally,a simulated adjustment problem is constructed to explain the method given in this paper.The results from the semiparametric model and GM model are compared.The results demonstrate that the model errors or the systematic errors of the observations can be detected correctly with the semiparametric estimate method.
引用
收藏
页码:10 / 13
页数:4
相关论文
共 4 条
[1]  
Theoryofcontemporaryadjustmentanditsapplication. HuangWB. . 1992
[2]  
Collocation,filteringandnonparametricregression. FischerB,HeglandM. ZfV . 1999
[3]  
Nearneighbouresti mateinsemiparametricregressionmodel:themartingaledifferenceerrorsequencecase. YanZZ,WuZW,NieZK. JournalofAppliedProbabilityandStatistics . 2001
[4]  
Foundationofsurveyingadjustment. SurveyingAdjustmentStaffRoomofWuhanTechnicalU niversityofSurveyingandMapping. . 1996