为了更好地进行旋转机械故障诊断,提出一种粒子群优化(particle swarm optimization,PSO)最小二乘小波支持向量机(least square wavelet support vector machine,LS-WSVM)的故障诊断模型。先将故障信号经验模式分解(empirical mode decomposition,EMD)为多个内禀模态分量(intrinsic mode function,IMF)之和,再提取表征故障特征的IMF分量能量构造特征向量输入到PSO优化的LS-WSVM进行故障模式识别。EMD分解可自适应提取故障特征信号,PSO参数优化可快速准确得到LS-WSVM的全局最优参数,提高LS-WSVM的故障诊断精度和自适应诊断能力。通过滚动轴承的故障模拟实验验证了该方法的有效性。