基于模糊自适应谐振网的多源遥感图像融合方法

被引:1
作者
周宇
张黎宁
高文君
机构
[1] 南京林业大学信息技术与科学学院
关键词
模糊自适应谐振网; 一般模糊极小-极大网; 多源遥感; 图像融合; 动态聚类;
D O I
暂无
中图分类号
TP751 [图像处理方法];
学科分类号
摘要
介绍模糊自适应谐振网在多源遥感图像融合的应用。详细分析模糊自适应谐振网聚类算法的步骤和特点,并比较模糊自适应谐振网和一般模糊极小-极大网的差异。实验证明模糊自适应谐振网的自适应稳定性佳,其聚类速度优于一般模糊极小-极大网,而一般模糊极小-极大网聚类精度较好,对训练区域的依赖性较强。
引用
收藏
页码:84 / 86
页数:3
相关论文
共 8 条
  • [1] Sensor and data fusion concepts and applications. Klein LA. . 1998
  • [2] Amassively parallel architecture for a self-organizing neural pattern recognition machine. Carpenter G A,Grossberg S. Comput Vision,Graphics and Image Processing . 1987
  • [3] ART2:self-organization of stable categoryrecognition codes for analog input patterns. Carpenter G A,Grossberg S. Applied Optics . 1987
  • [4] Sensor Fusion. Dasarathy B V. Optical Engineering . 1996
  • [5] Constructive Feedforward ART Clustering Networks-Part I. Fan Ming,Xiao-feng Meng. Neural Networks . 2002
  • [6] Fuzzy min-max network-Part1 classification. Simpson P K. IEEE Transactions on Neural Networks .
  • [7] General fuzzy min-max neural network for clusteringand classification. Gabrys B,et al. IEEE Transactions on Neural Networks . 1999
  • [8] ART3:hierarchical search chemical trans-mitters in self organizing pattern recognition architecture. Carpenter G A,Grossberg S. Neural Networks . 1990