Generative Adversarial Networks:Introduction and Outlook

被引:32
作者
Kunfeng Wang [1 ,2 ,3 ]
Chao Gou [4 ,5 ]
Yanjie Duan [4 ,5 ]
Yilun Lin [4 ,5 ]
Xinhu Zheng [6 ]
Fei-Yue Wang [1 ,2 ,7 ]
机构
[1] IEEE
[2] State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences
[3] Qingdao Academy of Intelligent Industries
[4] State Key Laboratory of Management and Control for Complex Systems, Institute of Automation,Chinese Academy of Sciences
[5] University of Chinese Academy of Sciences
[6] Department of Computer Science and Engineering, University of Minnesota
[7] Research Center for Computational Experiments and Parallel Systems Technology, National University of Defense Technology
基金
中国国家自然科学基金;
关键词
ACP approach; adversarial learning; generative adversarial networks(GANs); generative models; parallel intelligence; zero-sum game;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs’ proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs’ advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence.
引用
收藏
页码:588 / 598
页数:11
相关论文
共 12 条
  • [1] 平行机器人与平行无人系统:框架、结构、过程、平台及其应用
    白天翔
    王帅
    沈震
    曹东璞
    郑南宁
    王飞跃
    [J]. 自动化学报, 2017, 43 (02) : 161 - 175
  • [2] PDP: Parallel Dynamic Programming
    Fei-Yue Wang
    Jie Zhang
    Qinglai Wei
    Xinhu Zheng
    Li Li
    [J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4 (01) : 1 - 5
  • [3] Steps toward Parallel Intelligence[J]. Fei-Yue Wang,Xiao Wang,Lingxi Li,Li Li.IEEE/CAA Journal of Automatica Sinica. 2016(04)
  • [4] 平行视觉:基于ACP的智能视觉计算方法[J]. 王坤峰,苟超,王飞跃.自动化学报. 2016(10)
  • [5] 平行控制:数据驱动的计算控制方法
    王飞跃
    [J]. 自动化学报, 2013, 39 (04) : 293 - 302
  • [6] 复杂系统的平行控制理论及应用
    王飞跃
    刘德荣
    熊刚
    程长建
    赵冬斌
    [J]. 复杂系统与复杂性科学, 2012, 9 (03) : 1 - 12
  • [7] 关于复杂系统的建模、分析、控制和管理
    王飞跃
    [J]. 复杂系统与复杂性科学, 2006, (02) : 26 - 34
  • [8] 平行系统方法与复杂系统的管理和控制
    王飞跃
    [J]. 控制与决策, 2004, (05) : 485 - 489+514
  • [9] 计算实验方法与复杂系统行为分析和决策评估
    王飞跃
    [J]. 系统仿真学报, 2004, (05) : 893 - 897
  • [10] A joint cascaded framework for simultaneous eye detection and eye state estimation[J] . Chao Gou,Yue Wu,Kang Wang,Kunfeng Wang,Fei-Yue Wang,Qiang Ji.Pattern Recognition . 2017