利用改进分形特征对SAR图像目标检测方法的研究

被引:15
作者
承德保 [1 ]
胡风明 [2 ,3 ]
杨汝良 [2 ]
机构
[1] 北京航空航天大学经济管理学院
[2] 中国科学院电子学研究所
[3] 中国科学院研究生院
关键词
合成孔径雷达; 目标检测; 指数小波变换; 改进分形特征; 扩展分形特征;
D O I
暂无
中图分类号
TN958 [雷达:按体制分];
学科分类号
摘要
改进分形特征是用指数小波在一个尺度上对检测图像滤波,针对特定大小目标用能量关系函数求得各像素点的分形特征。该文研究了利用改进分形特征对SAR图像进行目标检测的方法,分别使用改进特征与扩展分形特征对单一背景和复杂背景条件下的SAR图像进行目标检测,结果表明:改进分形特征能够在这两种背景条件下以更低虚警率检测出全部特定大小的目标,目标空间可分辨性好、位置指示准确;但在复杂背景条件下的检测虚警率比单一背景下的检测虚警率有所上升。
引用
收藏
页码:164 / 168
页数:5
相关论文
共 9 条
[1]  
https://www.sdms.afrl.af.mil/request/data_request.php .
[2]  
Target detection based on multiresolution fractal analysis. Charalampidis D,Stein G W. SPIE proceedings,Signal Processing,Sensor Fusion,and Target Recognition XVI . 2007
[3]  
A novel approach for disaster monitoring:fractal models and tools. Martino G D,Iodice A,Riccio D,et al. IEEE Trans.on Geoscience and Remote Sensing . 2007
[4]  
Wavelet-based rotational invariant roughness features for texture classification and segmentation. Charalampidis,D.,Kasparis,T. IEEE Transactions on Image Processing . 2002
[5]  
Two-dimensional variation algorithm for fractal analysis of sea SAR images. Berizzi F,,Bertini G,Martorella M,et al. IEEE Trans.on Geoscience and Remote Sensing . 2006
[6]  
Improved SAR Target Detection via Extended Fractal Features. Kaplan L M. IEEE Transactions on Aerospace and Electronic Systems . 2001
[7]  
Extended fractal feature for first stage SAR target detection. Kaplan L M,,Murenzi R,Namuduri K. Proceedings of SPIE the International Society for Optical Engineering . 1999
[8]  
Multiresolution Detections of Coherent Radar Targets. N S Subotic,B J Thelen,Gorman J D,Reiley M F. IEEE Trans. on Image Processing, 6. Jan . 1997
[9]  
Statistical modeling of target and clutter in single-look non-polorimetric SAR imagery. Jose S Salazar,Don R Hush,et al. Proceeding of international Conference Signal and Image Processing . 1998