基于改进粒子群算法的模糊神经网络及其在短时天气预报中的应用

被引:7
作者
周岩
王盛
高传善
孙慰迟
机构
[1] 复旦大学计算机科学技术学院
关键词
改进粒子群; 神经网络; 模糊;
D O I
暂无
中图分类号
P456.1 [短期预报方法]; TP183 [人工神经网络与计算];
学科分类号
摘要
提出一种基于改进粒子群模糊神经网络进行短时天气预测的方法,将粒子群算法与模糊人工神经网络进行融合,充分发挥粒子群算法全局寻优的优势。以上海地区天气预报作为实例,建立了基于改进粒子群算法的多模型模糊神经网络预报模型,试验结果表明该方法对于短时天气预报具有较好的准确度,得到了上海中心气象台有关专家的肯定。
引用
收藏
页码:234 / 237
页数:4
相关论文
共 5 条
  • [1] A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. Chia-Feng Juang. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics . 2004
  • [2] Angeline Evolutionary Optimization Versus Particle Swarm Op-timization,Philosophy and Performance Difference. Peter J. Lecture NotesIn Computer Science . 1998
  • [3] A New Ann Optimized By Improved PSOAlgorithm Combined With Chaos And Its Application In Short-termLoad Forecasting. Yang Shangdong,Li Xiang. IEEE Transaction on Computational Intelligenceand Security,2006 International Conference . 2006
  • [4] Progress in Researches on Artificial Neural Network Theoryand Application in Atmospheric Science. Jin Long. Meteorological Scienceand Technology . 2004
  • [5] Particle swarm optimization. Kennedy J,Eberhart R C. Proceedingsof the IEEE International Conference on Neural Networks . 1995