基于知网和术语相关度的本体关系抽取研究

被引:7
作者
傅继彬 [1 ]
刘杰 [2 ]
贾可亮 [3 ]
毛金涛 [1 ]
机构
[1] 北京理工大学计算机科学技术学院
[2] 首都师范大学信息工程学院
[3] 山东经济学院信息管理学院
关键词
关系抽取; 本体学习; 知网; 自然语言处理;
D O I
暂无
中图分类号
TP391.1 [文字信息处理];
学科分类号
081203 ; 0835 ;
摘要
提出一种基于知网和术语相关度的关系抽取方法。首先通过句法分析提取术语的上下文特征,结合自然语言特征和互信息的方法计算术语之间的相关度,然后使用术语的义原和动态角色作为关键词,在知网语义关系框架中定位关系,并为关系指定明确的语义标签。实验结果表明该方法具有较好的实用效果。
引用
收藏
页码:36 / 40
页数:5
相关论文
共 9 条
[1]  
Mathematical structures of language. Harris,Zelig S. . 1968
[2]  
Learning Concept Hierarchies FromText Corpora Using Formal Concept Analysis. Cimiano P,Hotho A,Staab S. Journal of ArtificialIntelligence Research . 2005
[3]  
RelExt:ATool for Relation Extraction fromText in Ontology Extension. Schutz A,Buitelaar P. Proceedings ofthe Internation-al Semantic Web Conference . 2005
[4]  
Measures of Distributional Similarity. Lee L. Proceedingsofthe37th Annual Meeting ofthe Association forComputational Lin-guistics(ACL) . 1999
[5]  
Automatic Acquisition of Hyponyms from Large TextCorpora. Hearst M A. Proceedings ofthe14th International Conferenceon Computational Linguistics(COLING) . 1992
[6]  
Acquiring Conceptual Relationships from Domain-specific Texts. Yamaguchi T. Proceedings ofthe IJCAIWorkshopon Ontol-ogy Learning . 2001
[7]  
Unsupervised learning of semantic relations between concepts of a molecular biology ontology. Massimiliano Ciramita,Ald Gangemi,and Esther Ratsch etc. Proceedings of the 19th International Joint Conference on Artificial Intelligence . 2005
[8]  
A statistical corpus-based term extractor. PANTEL P,LIN D K. Proceedings of the 14th Biennial Conference of the Canadian So-ciety on Computational Studies of Intelligence:Advances in ArtificialIntelligence . 2001
[9]  
Learning Relations usingCollocations. Heyer G,Lauter M,Quasthoff U,et al. Proceeding ofthe IJCAIWorkshopon Ontolo-gy Learning . 2001