易燃混合气体爆炸完全基元反应模型数值模拟

被引:3
作者
胡湘渝
张德良
机构
[1] 北京理工大学爆炸与安全科学国家重点实验室
[2] 中国科学院力学研究所高温气体动力学开放实验室 北京
[3] 北京
基金
国家高性能计算基金;
关键词
爆炸; 爆轰波; 数值模拟; 基元反应;
D O I
暂无
中图分类号
X928.7 [火灾与爆炸事故];
学科分类号
0838 ;
摘要
采用完全基元反应模型和高精度 ENO格式对易燃混合气体爆炸过程进行了数值研究。对 H2 /O2 /Ar混合气体起爆和爆轰波传播过程的数值模拟结果表明 ,计算的爆轰波阵面参数和实验相当符合。对爆轰波反应区化学反应的研究表明 ,参与反应的不同组分具有不同类型的变化特征 ,这些特征为爆炸灾害的预防设计提供了线索
引用
收藏
页码:22 / 27
页数:6
相关论文
共 18 条
[1]  
Efficient implementation of essentially non-oscillatory shock-capturing schemes Ⅰ. Shu W C and Osher S. Journal of Computational Physics . 1988
[2]  
High resolution schemes for hyperbolic conservation laws. Harten R J. Journal of Computational Physics . 1983
[3]  
Efficient implementation of essentially non-oscillatory shock-capturing schemes II. Shu W C and Osher S. Journal of Computational Physics . 1989
[4]  
Computations of detonation structure: the influnce of model imput parameter. Lefebvre M H. . 1992
[5]  
Toward the ultimate conservative difference scheme: a second-order scheme to Godunov’ s method. van Leer B. Journal of Computational Physics . 1979
[6]  
CHEMKIN: A general purpose problem independent , transportable Fortran Chemical kinetics code package. Kee R J. . 1989
[7]  
Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chamman-Jouget setonations. Gordon S and McBride B J. . 1971
[8]  
Hypersonic and High Temperature Gas Dynamics. Anderson J D and Oran E S. . 1989
[9]  
Finite difference method for numerical computational of discontinuous solutions of the equation of fluid dynamics. Godunov S K. Matematicheskii Sbornik . 1959
[10]  
Simulation of cellular structure in a detonation wave. Lefebvre M H. Shock Waves, Explosions and Detonations, Prog in Astro and Aero . 1991