深度学习的金融实证应用:动态、贡献与展望

被引:60
作者
苏治 [1 ]
卢曼 [2 ]
李德轩 [3 ]
机构
[1] 中央财经大学
[2] 中国人民大学国际货币研究所
[3] 中国传媒大学
关键词
深度学习; 金融市场预测; 文本挖掘; 深度神经网络; 深度信念网络;
D O I
暂无
中图分类号
F830 [金融、银行理论];
学科分类号
1201 ; 020204 ;
摘要
随着智能时代来临以及金融数据分析需求提升,深度学习已经成为金融领域中的应用前沿,特别是在预测金融市场运动、处理文本信息、改进交易策略方面。深度学习包含深度神经网络、深度信念网络等多种结构,通过分层结构提取深层特征,强化重要因素、过滤噪音,对提升预测准确率具有重要意义;其应用及由此衍生的优化技术改进了金融领域预测分析方法,促使实证研究范式从线性向非线性转变、从关注参数显著性向关注模型结构和动态特征转变,同时为丰富金融经济理论做出贡献。构建结构合适、效果稳健的模型以捕捉金融数据有效特征并进行经济含义阐释是应用深度学习方法的难点与重点;未来研究可以从挖掘深层经济意义、提炼一般性预测分析框架、探索其对异质信息的适用性等角度展开。
引用
收藏
页码:111 / 126
页数:16
相关论文
共 30 条
[1]   基于DBN的金融时序数据建模与决策 [J].
曾志平 ;
萧海东 ;
张新鹏 .
计算机技术与发展, 2017, 27 (04) :1-5
[2]   短期利率波动测度与预测:基于混频宏观-短期利率模型 [J].
尚玉皇 ;
郑挺国 .
金融研究, 2016, (11) :47-62
[3]  
一种金融市场预测的深度学习模型:FEPA模型[D]. 张承钊.电子科技大学 2016
[4]  
Computational Intelligence and Financial Markets: A Survey and Future Directions[J] . Rodolfo C. Cavalcante,Rodrigo C. Brasileiro,Victor L.F. Souza,Jarley P. Nobrega,Adriano L.I. Oliveira.Expert Systems With Applications . 2016
[5]  
Deep learning applications and challenges in big data analytics[J] . Maryam M Najafabadi,Flavio Villanustre,Taghi M Khoshgoftaar,Naeem Seliya,Randall Wald,Edin Muharemagic.Journal of Big Data . 2015 (1)
[6]  
Forecasting exchange rate using deep belief networks and conjugate gradient method[J] . Furao Shen,Jing Chao,Jinxi Zhao.Neurocomputing . 2015
[7]   Predicting abnormal returns from news using text classification [J].
Luss, Ronny ;
D'Aspremont, Alexandre .
QUANTITATIVE FINANCE, 2015, 15 (06) :999-1012
[8]  
Deep learning in neural networks: An overview[J] . Jürgen Schmidhuber.Neural Networks . 2014
[9]  
Text mining for market prediction: A systematic review[J] . Arman Khadjeh Nassirtoussi,Saeed Aghabozorgi,Teh Ying Wah,David Chek Ling Ngo.Expert Systems With Applications . 2014 (16)
[10]   Multiple Kernel Learning with Fisher Kernels for High Frequency Currency Prediction [J].
Fletcher, Tristan ;
Shawe-Taylor, John .
COMPUTATIONAL ECONOMICS, 2013, 42 (02) :217-240