基于KL散度的社交媒体用户隐私安全保护研究

被引:1
作者
周群
机构
[1] 五邑大学图书馆
关键词
KL散度; 社交媒体; 隐私安全;
D O I
暂无
中图分类号
TP309 [安全保密];
学科分类号
081201 ; 0839 ; 1402 ;
摘要
将社交媒体用户隐私安全的威胁归为用户信息配置模型和对手模型,应用KL散度理论和最大化熵方法论构建用户隐私安全保护标准,并进行案例分析。
引用
收藏
页码:9 / 13
页数:5
相关论文
共 18 条
  • [1] (Closeness:Privacy beyond A-anonymity and /-diversity. Li N,Li T,Venkatasubramanian S. Proc.of the 23rd IEEE Int’’l Conf. on Data Engineering . 2007
  • [2] Adnostic:Privacy Preserving Targeted Advertising. V Toubiana,A Narayanan,etd. proc IEEE Symp.Netw.Distrib.Syst.Secur.SNDSS . 2010
  • [3] Untraceable electronic mail, return addresses, and digital pseudonyms[J] . David L. Chaum. &nbspCommunications of the ACM . 1981 (2)
  • [4] Measuring the privacy of user profiles in personalized information systems[J] . Javier Parra-Arnau,David Rebollo-Monedero,Jordi Forné. &nbspFuture Generation Computer Systems . 2013
  • [5] K-anonymity: a model for protecting privacy. Sweeney L. International Journal on Uncertainty,Fuzziness and Knowledge-Based Systems . 2002
  • [6] Maximum entropy spectral analysis. Burg,JP. PhD thesis . 1975
  • [7] Amazon.com recommendations: item-to-item collaborative filtering. Greg Linden, Brent Smith, Jeremy York. IEEE Internet Computing . 2003
  • [8] Papers on Probability,Statistics and Statistical Physis. E T Jaynes. Reidel . 1982
  • [9] Facebook to double revenue to$4.27billion,89%is from ads (Dec,2011). E Protalinski. http://www.zdnet.com/blog/facebook/facebook-to-double-revenue-to-427-billion-89-is-from-ads/3877 . 2015
  • [10] Facebook for business. http://www.facebook.com/business/ads . 2015