平面上散乱数据点的二次曲线拟合

被引:14
作者
刘海香
张彩明
梁秀霞
机构
[1] 山东大学计算机科学与技术学院
[2] 山东大学计算机科学与技术学院 济南
[3] 济南
关键词
二次曲线; 拟合; 最小二乘法;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
基于代数距离定义目标函数 ,在 6种不同约束条件下得到 6条基本二次曲线 ,最终的拟合二次曲线由 6条基本二次曲线系数加权平均产生 用实例对该方法和其他几种方法拟合曲线的误差作了比较 ,并讨论了基于代数距离目标函数的几何意义
引用
收藏
页码:1594 / 1598
页数:5
相关论文
共 8 条
[1]  
Direct least square fitting of ellipses. Fitzgibbon A,Pilu M,Fisher Robert B. Pattern Analysis and Applications . 1999
[2]  
Fitting conic sections to very scattered data: An interactive refinement of the Bookstein algorithm. Sampson P D. Computer Vision Graphics and Image Processing . 1982
[3]  
Estimation of planar curves, surfaces and non-planar space curves defined by implicit equations, with applications to edge and range image segmentation. Taubin G. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1991
[4]  
A note on the least squares fitting of ellipse. Rosin P L. Pattern Recognition . 1993
[5]  
Parameter estimation techniques: A tutorial with application to conic fitting. Zhang Zhengyou. Image and Vision Computing . 1997
[6]  
Least-sqares fitting of circles and ellipses. Gander W,Golub G H,Strebel R. Borsa Internazionale del Turismo . 1994
[7]  
Least-sqares fitting of circles and ellipses. Gander W,Golub G H,Strebel R. Borsa Internazionale del Turismo . 1994
[8]  
Fitting conic sections to scattered data. Bookstein F L. Computer Vision . 1979