复杂样品近红外光谱定量分析模型的构建方法

被引:13
作者
郝勇
蔡文生
邵学广
机构
[1] 南开大学化学学院,分析科学研究中心
关键词
近红外光谱; 多元校正; 偏最小二乘; 校正集样品设计; 波段优选;
D O I
暂无
中图分类号
O657.33 [红外光谱分析法];
学科分类号
摘要
针对复杂样品近红外光谱分析中校正集的设计问题,探讨了标准样品参与复杂样品建模的可行性.通过标准样品和复杂基质样品共同构建的偏最小二乘(PLS)模型,考察了波段筛选和建模参数对预测结果的影响.结果表明,采用PLS方法建立定量模型时,校正集样品性质应该尽量与预测集样品相似,当样品的性质相差较大时,适当增加校正集样品的差异性可使模型具有更强的预测能力.同时,波段优选对提高预测结果的准确性具有重要的意义.
引用
收藏
页码:28 / 31
页数:4
相关论文
共 12 条
  • [1] Blanco M,Bautista M,Alcala M. Journal of Pharmaceutical Sciences . 2008
  • [2] Dantas H.A,Galvao R.K.H.,Araujo M.C.U.et al. Chemometrics and Intelligent Laboratory Systems . 2004
  • [3] Inon F.A,Garrigues J.M.,Garrigues S.et al. Analytica Chimica Acta . 2003
  • [4] Galera M.M.,Zamora D.P.,Vidal J.L.M.et al. Analytical Letters . 2002
  • [5] Ferre J,Rius F.X. Analytical Chemistry . 1996
  • [6] Kennard R.W,Stone L.A. Technometrics . 1969
  • [7] Handbook of Near-Infrared Analysis. Burns DA,Ciurczak EW. . 2001
  • [8] A method for near-infrared spectral calibration of complex plant samples with wavelet trans-form and elimination of uninformative variables. Shao X G,Wang F,Chen D,Su Q D. Analytical and Bioanalytical Chemistry . 2004
  • [9] Representative subset selection in modifiediterative predictor weighting(mIPW)-PLS models for parsimonious multivariate calibration. Da Chen,Wensheng Cai,and Xueguang Shao. Chemometrics and Intelligent Laboratory Systems . 2007
  • [10] IntervalPartial Least-Squares Regression(iPLS):A Compar-ative Chemometric Study with an Example from Near-Infrared Spectroscopy. Norgaard L,Saudland A,Wagner J,et al. Applied Spectroscopy . 2000